首页> 外文期刊>Signal Processing, IEEE Transactions on >Joint Sparse Recovery Method for Compressed Sensing With Structured Dictionary Mismatches
【24h】

Joint Sparse Recovery Method for Compressed Sensing With Structured Dictionary Mismatches

机译:结构字典不匹配的压缩感知联合稀疏恢复方法

获取原文
获取原文并翻译 | 示例

摘要

In traditional compressed sensing theory, the dictionary matrix is given a priori, whereas in real applications this matrix suffers from random noise and fluctuations. In this paper, we consider a signal model where each column in the dictionary matrix is affected by a structured noise. This formulation is common in direction-of-arrival (DOA) estimation of off-grid targets, encountered in both radar systems and array processing. We propose to use joint sparse signal recovery to solve the compressed sensing problem with structured dictionary mismatches and also give an analytical performance bound on this joint sparse recovery. We show that, under mild conditions, the reconstruction error of the original sparse signal is bounded by both the sparsity and the noise level in the measurement model. Moreover, we implement fast first-order algorithms to speed up the computing process. Numerical examples demonstrate the good performance of the proposed algorithm and also show that the joint-sparse recovery method yields a better reconstruction result than existing methods. By implementing the joint sparse recovery method, the accuracy and efficiency of DOA estimation are improved in both passive and active sensing cases.
机译:在传统的压缩感测理论中,字典矩阵是先验的,而在实际应用中,该矩阵会受到随机噪声和波动的影响。在本文中,我们考虑一个信号模型,其中字典矩阵中的每一列都受到结构噪声的影响。在雷达系统和阵列处理中都遇到的离网目标的到达方向(DOA)估计中,此公式很常见。我们建议使用联合稀疏信号恢复来解决具有结构化字典不匹配的压缩感测问题,并给出对此联合稀疏恢复的分析性能约束。我们表明,在温和条件下,原始稀疏信号的重构误差受测量模型中的稀疏性和噪声水平的限制。此外,我们实现了快速的一阶算法以加快计算过程。数值算例表明了该算法的良好性能,并且表明联合稀疏恢复方法比现有方法具有更好的重建效果。通过实施联合稀疏恢复方法,可以提高被动和主动传感情况下DOA估计的准确性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号