首页> 外文期刊>Signal Processing, IEEE Transactions on >Fienup Algorithm With Sparsity Constraints: Application to Frequency-Domain Optical-Coherence Tomography
【24h】

Fienup Algorithm With Sparsity Constraints: Application to Frequency-Domain Optical-Coherence Tomography

机译:具有稀疏约束的Fienup算法:在频域光学相干层析成像中的应用

获取原文
获取原文并翻译 | 示例

摘要

We address the problem of reconstructing a sparse signal from its DFT magnitude. We refer to this problem as the sparse phase retrieval (SPR) problem, which finds applications in tomography, digital holography, electron microscopy, etc. We develop a Fienup-type iterative algorithm, referred to as the Max-$K$ algorithm, to enforce sparsity and successively refine the estimate of phase. We show that the Max-$K$ algorithm possesses Cauchy convergence properties under certain conditions, that is, the MSE of reconstruction does not increase with iterations. We also formulate the problem of SPR as a feasibility problem, where the goal is to find a signal that is sparse in a known basis and whose Fourier transform magnitude is consistent with the measurement. Subsequently, we interpret the Max-$K$ algorithm as alternating projections onto the object-domain and measurement-domain constraint sets and generalize it to a parameterized relaxation, known as the relaxed averaged alternating reflections (RAAR) algorithm. On the application front, we work with measurements acquired using a frequency-domain optical-coherence tomography (FDOCT) experimental setup. Experimental results on measured data show that the proposed algorithms exhibit good reconstruction performance compared with the direct inversion technique, homomorphic technique, and the classical Fienup algorithm without sparsity constraint; specifically, the autocorrelation artifacts and background noise are suppressed to a significant extent. We also demonstrate that the RAAR algorithm offers a broader framework for FDOCT reconstruction, of which the direct inversion technique and the proposed Max- $K$ algorithm become special instances corresponding to spe- ific values of the relaxation parameter.
机译:我们解决了从DFT大小重构稀疏信号的问题。我们将此问题称为稀疏相位检索(SPR)问题,该问题可在断层扫描,数字全息术,电子显微镜等领域找到应用。我们开发了Fienup型迭代算法,称为Max- $ K $ 算法,以增强稀疏性并相继完善相位估计。我们证明Max- $ K $ 算法在某些条件下具有柯西收敛性,也就是说,重建的MSE确实不会随着迭代而增加。我们还将SPR问题公式化为可行性问题,其目的是找到在已知基础上稀疏且其傅里叶变换幅度与测量值一致的信号。随后,我们将Max- $ K $ 算法解释为对对象域约束域和测量域约束集的交替投影,以及将其广义化为参数化松弛,称为松弛平均交替反射(RAAR)算法。在应用程序方面,我们使用频域光学相干断层扫描(FDOCT)实验装置进行测量。实测数据的实验结果表明,与直接反演,同态技术和没有稀疏约束的经典Fienup算法相比,该算法具有良好的重构性能。具体地,自相关伪像和背景噪声被显着地抑制。我们还证明了RAAR算法为FDOCT重构提供了更广阔的框架,其中直接反演技术和拟议的Max- <公式Formulatype =“ inline”> $ K $ < / formula>算法成为与松弛参数的特定值相对应的特殊实例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号