首页> 外文期刊>Signal Processing, IEEE Transactions on >Joint Approximately Sparse Channel Estimation and Data Detection in OFDM Systems Using Sparse Bayesian Learning
【24h】

Joint Approximately Sparse Channel Estimation and Data Detection in OFDM Systems Using Sparse Bayesian Learning

机译:使用稀疏贝叶斯学习的OFDM系统中的联合近似稀疏信道估计和数据检测

获取原文
获取原文并翻译 | 示例

摘要

It is well known that the impulse response of a wideband wireless channel is approximately sparse, in the sense that it has a small number of significant components relative to the channel delay spread. In this paper, we consider the estimation of the unknown channel coefficients and its support in OFDM systems using a sparse Bayesian learning (SBL) framework for exact inference. In a quasi-static, block-fading scenario, we employ the SBL algorithm for channel estimation and propose a joint SBL (J-SBL) and a low-complexity recursive J-SBL algorithm for joint channel estimation and data detection. In a time-varying scenario, we use a first-order autoregressive model for the wireless channel and propose a novel, recursive, low-complexity Kalman filtering-based SBL (KSBL) algorithm for channel estimation. We generalize the KSBL algorithm to obtain the recursive joint KSBL algorithm that performs joint channel estimation and data detection. Our algorithms can efficiently recover a group of approximately sparse vectors even when the measurement matrix is partially unknown due to the presence of unknown data symbols. Moreover, the algorithms can fully exploit the correlation structure in the multiple measurements. Monte Carlo simulations illustrate the efficacy of the proposed techniques in terms of the mean-square error and bit error rate performance.
机译:众所周知,在相对于信道延迟扩展而言,宽带无线信道具有少量有效分量的意义上,它的脉冲响应大约是稀疏的。在本文中,我们考虑使用稀疏贝叶斯学习(SBL)框架进行精确推断的OFDM系统中未知信道系数的估计及其支持。在准静态,块衰落情况下,我们采用SBL算法进行信道估计,并提出了联合SBL(J-SBL)和低复杂度递归J-SBL算法进行联合信道估计和数据检测。在时变情况下,我们对无线信道使用一阶自回归模型,并提出了一种新颖的,递归的,低复杂度的基于卡尔曼滤波的SBL(KSBL)算法进行信道估计。我们对KSBL算法进行概括,以获得执行联合通道估计和数据检测的递归联合KSBL算法。即使由于存在未知数据符号而导致测量矩阵部分未知时,我们的算法也可以有效地恢复一组近似稀疏的向量。而且,该算法可以充分利用多次测量中的相关结构。蒙特卡洛仿真从均方误差和误码率性能方面说明了所提出技术的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号