首页> 外文期刊>IEEE Transactions on Signal Processing >Randomized Algorithms for Optimal Solutions of Double-Sided QCQP With Applications in Signal Processing
【24h】

Randomized Algorithms for Optimal Solutions of Double-Sided QCQP With Applications in Signal Processing

机译:双向QCQP最优解的随​​机算法及其在信号处理中的应用

获取原文
获取原文并翻译 | 示例

摘要

Quadratically constrained quadratic programming (QCQP) with double-sided constraints has plenty of applications in signal processing as have been addressed in recent years. QCQP problems are hard to solve, in general, and they are typically approached by solving a semidefinite programming (SDP) relaxation followed by a postprocessing procedure. Existing postprocessing schemes include Gaussian randomization to generate an approximate solution, rank reduction procedure (the so-called purification), and some specific rank-one matrix decomposition techniques to yield a globally optimal solution. In this paper, we propose several randomized postprocessing methods to output not an approximate solution but a globally optimal solution for some solvable instances of the double-sided QCQP (i.e., instances with a small number of constraints). We illustrate their applicability in robust receive beamforming, radar optimal code design, and broadcast beamforming for multiuser communications. As a byproduct, we derive an alternative (shorter) proof for the Sturm-Zhang rank-one matrix decomposition theorem.
机译:具有双面约束的二次约束二次编程(QCQP)在信号处理中具有大量应用,这在近年来已经得到解决。通常,QCQP问题很难解决,通常通过解决半定编程(SDP)松弛和后处理过程来解决。现有的后处理方案包括产生近似解的高斯随机化,秩降低程序(所谓的提纯),以及一些特定的秩一矩阵分解技术以产生全局最优解。在本文中,我们针对随机QCQP的某些可解决实例(即约束数量较少的实例)提出了几种随机后处理方法,以输出近似解决方案而不是全局最优解。我们说明了它们在健壮的接收波束成形,雷达最佳代码设计和多用户通信广播波束成形中的适用性。作为副产品,我们推导了Sturm-Zhang秩一矩阵分解定理的另一种(较短的)证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号