首页> 外文期刊>IEEE Transactions on Signal Processing >Decentralized Dynamic Optimization Through the Alternating Direction Method of Multipliers
【24h】

Decentralized Dynamic Optimization Through the Alternating Direction Method of Multipliers

机译:乘子交替方向法的分散动态优化

获取原文
获取原文并翻译 | 示例

摘要

This paper develops the application of the alternating direction method of multipliers (ADMM) to optimize a dynamic objective function in a decentralized multi-agent system. At each time slot, agents in the network observe local functions and cooperate to track the optimal time-varying argument of the sum objective. This cooperation is based on maintaining local primal variables that estimate the value of the optimal argument and auxiliary dual variables that encourage proximity with neighboring estimates. Primal and dual variables are updated by an ADMM iteration that can be implemented in a distributed manner whereby local updates require access to local variables and the most recent primal variables from adjacent agents. For objective functions that are strongly convex and have Lipschitz continuous gradients, the distances between the primal and dual iterates to their corresponding time-varying optimal values are shown to converge to a steady state gap. This gap is explicitly characterized in terms of the condition number of the objective function, the condition number of the network that is defined as the ratio between the largest and smallest nonzero Laplacian eigenvalues, and a bound on the drifts of the optimal primal variables and the optimal gradients. Numerical experiments corroborate theoretical findings and show that the results also hold for non-differentiable and non-strongly convex primal objectives.
机译:本文开发了乘数交变方向法(ADMM)的应用,以优化分散多智能体系统中的动态目标函数。在每个时隙,网络中的代理都会观察局部功能,并合作以跟踪总和目标的最佳时变参数。这种合作是基于维护估计最佳参数值的局部原始变量和鼓励与邻近估计值接近的辅助对偶变量的。原始变量和对偶变量通过ADMM迭代进行更新,该迭代可以以分布式方式实现,因此本地更新需要访问本地变量和来自相邻代理的最新原始变量。对于强凸且具有Lipschitz连续梯度的目标函数,原始迭代和对偶迭代之间的距离与其对应的随时间变化的最佳值显示为收敛到稳态间隙。根据目标函数的条件数,定义为最大和最小非零拉普拉斯特征值之比的网络的条件数以及最佳原始变量和最优变量的漂移的界限来明确表征此差距。最佳渐变。数值实验证实了理论发现,并表明结果也适用于不可微且非强凸的原始物镜。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号