首页> 外文期刊>Signal Processing, IEEE Transactions on >Two Timescale Joint Beamforming and Routing for Multi-Antenna D2D Networks via Stochastic Cutting Plane
【24h】

Two Timescale Joint Beamforming and Routing for Multi-Antenna D2D Networks via Stochastic Cutting Plane

机译:通过随机切割平面的多天线D2D网络的两个时标联合波束成形和路由

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a dynamic resource allocation scheme to exploit the mixed timescale channel state information (CSI) knowledge structure in a multi-antenna base station-assisted device-to-device (D2D) network. The short-term multi-antenna beamforming control at each transmit device is adaptive to the local real-time CSI. The long-term routing and flow control is adaptive to the global topology and the long-term global CSI statistics of the D2D network. The design objective is to maximize a network utility function subject to the average transmit power constraint, the flow balance constraints and the instantaneous physical layer capacity constraints. The mixed timescale problem can be decomposed into a short-term beamforming control problem and a long-term flow and routing control problem. Using the stochastic cutting plane, we propose a low complexity, self-learning algorithm, which converges to the global optimal solution without explicit knowledge of the channel statistics. Simulation illustrates performance gains with several baselines.
机译:本文提出了一种动态资源分配方案,以利用多天线基站辅助设备到设备(D2D)网络中的混合时标信道状态信息(CSI)知识结构。每个发送设备上的短期多天线波束形成控制都适应于本地实时CSI。长期路由和流控制适用于D2D网络的全局拓扑和长期全局CSI统计信息。设计目标是使网络效用函数最大化,这取决于平均发射功率约束,流平衡约束和瞬时物理层容量约束。混合时标问题可以分解为短期波束成形控制问题和长期流与路由控制问题。我们使用随机切割平面,提出了一种低复杂度的自学习算法,该算法收敛到全局最优解,而无需明确了解信道统计信息。仿真显示了具有多个基准的性能提升。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号