首页> 外文期刊>Signal Processing, IEEE Transactions on >Compressive Sensing of Stepped-Frequency Radar Based on Transfer Learning
【24h】

Compressive Sensing of Stepped-Frequency Radar Based on Transfer Learning

机译:基于转移学习的步进频率雷达压缩感知

获取原文
获取原文并翻译 | 示例

摘要

It usually suffers from long observing time and interference sensitivity when a radar transmits the high-range-resolution stepped-frequency chirp signal. Motivated by this, only partial pulses of the stepped-frequency chirp are utilized. For the obtained incomplete frequency data, a Bayesian model based on transfer learning is proposed to reconstruct the corresponding full-band frequency data. In the training phase, a complex beta process factor analysis (CBPFA) model is utilized to statistically model each aspect-frame from a set of given full-band frequency data, whose probability density function (pdf) can be learned from this CBPFA model. It is important to note that the numbers of factors and dictionaries are automatically learned from the data. The inference of CBPFA can be performed via the variational Bayesian (VB) method. In the reconstruction phase for the incomplete frequency data that “related” to the training samples, its corresponding full-band frequency data can be analytically reconstructed via the compressive sensing (CS) method and Bayesian criterion based on the transfer knowledge of the previous pdfs learned from the training phase. About the “relatedness” between each training frame and the incomplete test frequency data, we utilize the frame condition distribution of incomplete test frequency data to represent. The proposed method is validated on the measured high range resolution (HRR) data.
机译:当雷达发送高分辨力步进频率线性调频信号时,通常会遭受较长的观测时间和干扰敏感性。因此,仅利用了步进频率线性调频脉冲的部分脉冲。对于获得的不完整频率数据,提出了一种基于转移学习的贝叶斯模型,以重构相应的全频带频率数据。在训练阶段,复杂的beta过程因子分析(CBPFA)模型用于从一组给定的全频带频率数据中对每个方面帧进行统计建模,可以从该CBPFA模型中学习其概率密度函数(pdf)。重要的是要注意,因子和词典的数量是从数据中自动获悉的。可以通过变分贝叶斯(VB)方法执行CBPFA的推断。在与训练样本“相关”的不完整频率数据的重建阶段,可以基于先前学习的pdf的传递知识,通过压缩感测(CS)方法和贝叶斯准则对相应的全频带频率数据进行解析重建。从培训阶段开始。关于每个训练帧与不完整测试频率数据之间的“相关性”,我们利用不完整测试频率数据的帧条件分布来表示。所提出的方法在实测的高分辨力(HRR)数据上得到了验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号