首页> 外文期刊>Signal Processing, IEEE Transactions on >On Gridless Sparse Methods for Line Spectral Estimation From Complete and Incomplete Data
【24h】

On Gridless Sparse Methods for Line Spectral Estimation From Complete and Incomplete Data

机译:基于完整和不完整数据的线谱估计的无网格稀疏方法

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned about sparse, continuous frequency estimation in line spectral estimation, and focused on developing gridless sparse methods which overcome grid mismatches and correspond to limiting scenarios of existing grid-based approaches, e.g., optimization and SPICE, with an infinitely dense grid. We generalize AST (atomic-norm soft thresholding) to the case of nonconsecutively sampled data (incomplete data) inspired by recent atomic norm based techniques. We present a gridless version of SPICE (gridless SPICE, or GLS), which is applicable to both complete and incomplete data without the knowledge of noise level. We further prove the equivalence between GLS and atomic norm-based techniques under different assumptions of noise. Moreover, we extend GLS to a systematic framework consisting of model order selection and robust frequency estimation, and present feasible algorithms for AST and GLS. Numerical simulations are provided to validate our theoretical analysis and demonstrate performance of our methods compared to existing ones.
机译:本文关注线谱估计中的稀疏,连续频率估计,并将重点放在开发无网格稀疏方法上,该方法克服了网格不匹配问题,并与无限密集网格的现有基于网格方法(例如,优化和SPICE)的局限性相对应。我们将AST(原子范数软阈值)概括为基于最近基于原子规范的技术启发而获得的非连续采样数据(不完整数据)的情况。我们提出了SPICE的无网格版本(gridless SPICE或GLS),该版本适用于完整和不完整的数据,而无需了解噪声水平。我们进一步证明了在噪声的不同假设下,GLS和基于原子规范的技术之间的等效性。此外,我们将GLS扩展到一个由模型阶数选择和鲁棒频率估计组成的系统框架,并提出了AST和GLS的可行算法。提供了数值模拟,以验证我们的理论分析并证明我们的方法与现有方法相比的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号