首页> 外文期刊>Signal Processing, IEEE Transactions on >Compressive Imaging via Approximate Message Passing With Image Denoising
【24h】

Compressive Imaging via Approximate Message Passing With Image Denoising

机译:通过带有图像去噪的近似消息传递进行压缩成像

获取原文
获取原文并翻译 | 示例

摘要

We consider compressive imaging problems, where images are reconstructed from a reduced number of linear measurements. Our objective is to improve over existing compressive imaging algorithms in terms of both reconstruction error and runtime. To pursue our objective, we propose compressive imaging algorithms that employ the approximate message passing (AMP) framework. AMP is an iterative signal reconstruction algorithm that performs scalar denoising at each iteration; in order for AMP to reconstruct the original input signal well, a good denoiser must be used. We apply two wavelet-based image denoisers within AMP. The first denoiser is the “amplitude-scale-invariant Bayes estimator” (ABE), and the second is an adaptive Wiener filter; we call our AMP-based algorithms for compressive imaging AMP-ABE and AMP-Wiener. Numerical results show that both AMP-ABE and AMP-Wiener significantly improve over the state of the art in terms of runtime. In terms of reconstruction quality, AMP-Wiener offers lower mean-square error (MSE) than existing compressive imaging algorithms. In contrast, AMP-ABE has higher MSE, because ABE does not denoise as well as the adaptive Wiener filter.
机译:我们考虑压缩成像问题,其中从减少的线性测量数量中重建图像。我们的目标是在重建误差和运行时间方面改进现有的压缩成像算法。为了实现我们的目标,我们提出了采用近似消息传递(AMP)框架的压缩成像算法。 AMP是一种迭代信号重建算法,它在每次迭代时都执行标量去噪。为了使AMP很好地重建原始输入信号,必须使用良好的降噪器。我们在AMP中应用了两个基于小波的图像去噪器。第一个降噪器是“幅度比例不变贝叶斯估计器”(ABE),第二个是自适应维纳滤波器;我们将基于AMP的算法称为压缩成像AMP-ABE和AMP-Wiener。数值结果表明,在运行时间方面,AMP-ABE和AMP-Wiener都比现有技术有了显着改善。在重建质量方面,与现有的压缩成像算法相比,AMP-Wiener提供了更低的均方误差(MSE)。相反,AMP-ABE的MSE较高,因为ABE不像自适应Wiener滤波器那样去噪。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号