首页> 外文期刊>IEEE Transactions on Signal Processing >Narrowband Interference Mitigation in SC-FDMA Using Bayesian Sparse Recovery
【24h】

Narrowband Interference Mitigation in SC-FDMA Using Bayesian Sparse Recovery

机译:使用贝叶斯稀疏恢复的SC-FDMA中的窄带干扰缓解

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel narrowband interference (NBI) mitigation scheme for single carrier-frequency division multiple access systems. The proposed NBI cancellation scheme exploits the frequency-domain sparsity of the unknown signal and adopts a low complexity Bayesian sparse recovery procedure. At the transmitter, a few randomly chosen data locations are kept data free to sense the NBI signal at the receiver. Furthermore, it is noted that in practice, the sparsity of the NBI signal is destroyed by a grid mismatch between the NBI sources and the system under consideration. Toward this end, first, an accurate grid mismatch model is presented that is capable of assuming independent offsets for multiple NBI sources, and second, the sparsity of the unknown signal is restored prior to reconstruction using a sparsifying transform. To improve the spectral efficiency of the proposed scheme, a data-aided NBI recovery procedure is outlined that relies on adaptively selecting a subset of data-points and using them as additional measurements. Numerical results demonstrate the effectiveness of the proposed scheme for NBI mitigation.
机译:本文提出了一种针对单载波频分多址系统的新型窄带干扰(NBI)缓解方案。提出的NBI消除方案利用了未知信号的频域稀疏性,并采用了低复杂度的贝叶斯稀疏恢复程序。在发射机处,一些随机选择的数据位置保持数据自由,以在接收机处感测NBI信号。此外,应注意,实际上,NBI信号的稀疏性被NBI源与所考虑的系统之间的电网不匹配所破坏。为此,首先,提出了一种精确的网格失配模型,该模型能够为多个NBI源假设独立的偏移,其次,在使用稀疏变换进行重构之前,恢复了未知信号的稀疏性。为了提高所提出方案的频谱效率,概述了一种数据辅助的NBI恢复程序,该程序依赖于自适应地选择数据点的子集并将其用作附加测量。数值结果证明了所提出的NBI缓解方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号