首页> 外文期刊>IEEE Transactions on Signal Processing >Phase Retrieval from 1D Fourier Measurements: Convexity, Uniqueness, and Algorithms
【24h】

Phase Retrieval from 1D Fourier Measurements: Convexity, Uniqueness, and Algorithms

机译:一维傅立叶测量的相位检索:凸性,唯一性和算法

获取原文
获取原文并翻译 | 示例

摘要

This paper considers phase retrieval from the magnitude of one-dimensional over-sampled Fourier measurements, a classical problem that has challenged researchers in various fields of science and engineering. We show that an optimal vector in a least-squares sense can be found by solving a convex problem, thus establishing a hidden convexity in Fourier phase retrieval. We then show that the standard semidefinite relaxation approach yields the optimal cost function value (albeit not necessarily an optimal solution). A method is then derived to retrieve an optimal minimum phase solution in polynomial time. Using these results, a new measuring technique is proposed which guarantees uniqueness of the solution, along with an efficient algorithm that can solve large-scale Fourier phase retrieval problems with uniqueness and optimality guarantees.
机译:本文考虑从一维过采样傅立叶测量的幅度进行相位检索,这是一个经典问题,已经对科学和工程领域的研究人员提出了挑战。我们表明,通过解决凸问题,可以找到最小二乘意义上的最优矢量,从而在傅立叶相位检索中建立隐藏的凸度。然后,我们表明标准的半确定松弛方法可产生最佳成本函数值(尽管不一定是最佳解决方案)。然后导出一种方法,以在多项式时间内检索最佳最小相位解。利用这些结果,提出了一种新的测量技术,该技术可确保解决方案的唯一性,以及一种有效的算法,该算法可解决具有唯一性和最优性保证的大规模傅里叶相位检索问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号