首页> 外文期刊>IEEE Transactions on Signal Processing >Efficient Algorithms on Robust Low-Rank Matrix Completion Against Outliers
【24h】

Efficient Algorithms on Robust Low-Rank Matrix Completion Against Outliers

机译:针对离群值的鲁棒低秩矩阵补全的高效算法

获取原文
获取原文并翻译 | 示例

摘要

This paper considers robust low-rank matrix completion in the presence of outliers. The objective is to recover a low-rank data matrix from a small number of noisy observations. We exploit the bilinear factorization formulation and develop a novel algorithm fully utilizing parallel computing resources. Our main contributions are i) providing two smooth loss functions that promote robustness against two types of outliers, namely, dense outliers drawn from some elliptical distribution and sparse spike-like outliers with small additive Gaussian noise; and ii) an efficient algorithm with provable convergence to a stationary solution based on a parallel update scheme. Numerical results show that the proposed algorithm obtains a better solution with faster convergence speed than the benchmark algorithms in both synthetic and real data scenarios.
机译:本文考虑了存在异常值时鲁棒的低秩矩阵完成问题。目的是从少量嘈杂的观察中恢复低秩的数据矩阵。我们利用双线性分解公式,并充分利用并行计算资源开发了一种新颖的算法。我们的主要贡献是:i)提供两个平滑损失函数,以增强针对两种类型的离群值的鲁棒性,即从某些椭圆形分布中得出的密集离群值和具有较小加性高斯噪声的稀疏尖峰状离群值; ii)一种基于并行更新方案的可证明收敛到固定解的高效算法。数值结果表明,在合成和真实数据场景中,该算法均能以比基准算法更快的收敛速度获得更好的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号