首页> 外文期刊>IEEE Transactions on Signal Processing >Exploring Multimodal Data Fusion Through Joint Decompositions with Flexible Couplings
【24h】

Exploring Multimodal Data Fusion Through Joint Decompositions with Flexible Couplings

机译:通过具有灵活耦合的联合分解探索多峰数据融合

获取原文
获取原文并翻译 | 示例

摘要

A Bayesian framework is proposed to define flexible coupling models for joint tensor decompositions of multiple datasets. Under this framework, a natural formulation of the data fusion problem is to cast it in terms of a joint maximum a posteriori (MAP) estimator. Data-driven scenarios of joint posterior distributions are provided, including general Gaussian priors and non Gaussian coupling priors. We present and discuss implementation issues of algorithms used to obtain the joint MAP estimator. We also show how this framework can be adapted to tackle the problem of joint decompositions of large datasets. In the case of a conditional Gaussian coupling with a linear transformation, we give theoretical bounds on the data fusion performance using the Bayesian Cramér–Rao bound. Simulations are reported for hybrid coupling models ranging from simple additive Gaussian models to Gamma-type models with positive variables and to the coupling of data sets which are inherently of different size due to different resolution of the measurement devices.
机译:提出了贝叶斯框架来定义用于多个数据集的联合张量分解的灵活耦合模型。在此框架下,数据融合问题的自然表述是根据联合最大值后验(MAP)估计器进行转换。提供了联合后验分布的数据驱动方案,包括一般的高斯先验和非高斯耦合先验。我们提出并讨论用于获得联合MAP估计量的算法的实现问题。我们还展示了该框架如何适用于解决大型数据集的联合分解问题。在带有线性变换的条件高斯耦合的情况下,我们使用贝叶斯Cramér-Rao界给出了数据融合性能的理论界。报道了混合耦合模型的仿真,其范围从简单的加性高斯模型到具有正变量的Gamma型模型,以及由于测量设备的分辨率不同而固有地具有不同大小的数据集的耦合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号