首页> 外文期刊>IEEE Transactions on Signal Processing >Generalized Sampling Expansions with Multiple Sampling Rates for Lowpass and Bandpass Signals in the Fractional Fourier Transform Domain
【24h】

Generalized Sampling Expansions with Multiple Sampling Rates for Lowpass and Bandpass Signals in the Fractional Fourier Transform Domain

机译:分数阶傅里叶变换域中低通和带通信号具有多个采样率的广义采样扩展

获取原文
获取原文并翻译 | 示例

摘要

The objective of generalized sampling expansion (GSE) is the reconstruction of an unknown, continuously defined function from samples of the responses from linear time-invariant (LTI) systems that are each sampled using the th Nyquist rate. In this paper, we investigate the GSE for lowpass and bandpass signals with multiple sampling rates in the fractional Fourier transform (FRFT) domain. First, we propose an improvement of Papoulis’ GSE, which has multiple sampling rates in the FRFT domain. Based on the proposed GSE, we derive the periodic nonuniform sampling scheme and the derivative interpolation method by designing different fractional filters and selecting specific sampling rates. In addition, the Papoulis GSE and the previous GSE associated with FRFT are shown to be special instances of our results. Second, we address the problem of the GSE of fractional bandpass signals. A new GSE for fractional bandpass signals with equal sampling rates is derived. We show that the restriction of an even number of channels in the GSE for fractional bandpass signals is unnecessary, and perfect signal reconstruction is possible for any arbitrary number of channels. Further, we develop the GSE for a fractional bandpass signal with multiple sampling rates. Lastly, we discuss the application of the proposed method in the context of single-image super-resolution reconstruction based on GSE. Illustrations and simulations are presented to verify the validity and effectiveness of the proposed results.
机译:广义采样扩展(GSE)的目标是从线性时不变(LTI)系统的响应样本中重构未知,连续定义的函数,每个线性时不变系统均使用Nyquist速率进行采样。在本文中,我们研究了分数傅里叶变换(FRFT)域中具有多种采样率的低通和带通信号的GSE。首先,我们提出了Papoulis GSE的改进方案,该方案在FRFT域中具有多种采样率。在提出的GSE的基础上,通过设计不同的分数滤波器并选择特定的采样率,得出周期非均匀采样方案和导数插值方法。此外,Papoulis GSE和先前与FRFT相关的GSE被证明是我们结果的特殊实例。其次,我们解决了分数带通信号的GSE问题。得出了具有相等采样率的分数带通信号的新GSE。我们表明,对于分数带通信号,在GSE中限制偶数通道是不必要的,并且对于任意数量的通道,完美的信号重构都是可能的。此外,我们针对具有多个采样率的分数带通信号开发了GSE。最后,我们讨论了该方法在基于GSE的单图像超分辨率重建中的应用。插图和仿真被提出来验证所提出的结果的有效性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号