首页> 外文期刊>IEEE Transactions on Signal Processing >Super-Resolution Compressed Sensing for Line Spectral Estimation: An Iterative Reweighted Approach
【24h】

Super-Resolution Compressed Sensing for Line Spectral Estimation: An Iterative Reweighted Approach

机译:用于线谱估计的超高分辨率压缩传感:迭代加权方法

获取原文
获取原文并翻译 | 示例

摘要

Conventional compressed sensing theory assumes signals have sparse representations in a known dictionary. Nevertheless, in many practical applications such as line spectral estimation, the sparsifying dictionary is usually characterized by a set of unknown parameters in a continuous domain. To apply the conventional compressed sensing technique to such applications, the continuous parameter space has to be discretized to a finite set of grid points, based on which a “nominal dictionary” is constructed for sparse signal recovery. Discretization, however, inevitably incurs errors since the true parameters do not necessarily lie on the discretized grid. This error, also referred to as grid mismatch, leads to deteriorated recovery performance. In this paper, we consider the line spectral estimation problem and propose an iterative reweighted method which jointly estimates the sparse signals and the unknown parameters associated with the true dictionary. The proposed algorithm is developed by iteratively decreasing a surrogate function majorizing a given log-sum objective function, leading to a gradual and interweaved iterative process to refine the unknown parameters and the sparse signal. A simple yet effective scheme is developed for adaptively updating the regularization parameter that controls the tradeoff between the sparsity of the solution and the data fitting error. Theoretical analysis is conducted to justify the proposed method. Simulation results show that the proposed algorithm achieves super resolution and outperforms other state-of-the-art methods in many cases of practical interest.
机译:传统的压缩感测理论假设信号在已知字典中具有稀疏表示。然而,在许多实际应用中,例如线谱估计,稀疏字典通常以连续域中的一组未知参数为特征。为了将常规压缩感测技术应用于此类应用,必须将连续参数空间离散化为一组有限的网格点,在此基础上构建“名义字典”以进行稀疏信号恢复。但是,离散化不可避免地会引起错误,因为真实参数不一定位于离散化网格上。此错误(也称为网格不匹配)导致恢复性能下降。在本文中,我们考虑了线谱估计问题,并提出了一种迭代重加权方法,该方法联合估计稀疏信号和与真实词典相关的未知参数。所提出的算法是通过迭代减少代表给定对数和目标函数的代理函数来开发的,从而导致逐步和交织的迭代过程来细化未知参数和稀疏信号。开发了一种简单而有效的方案来自适应更新正则化参数,该参数控制解决方案的稀疏性与数据拟合误差之间的折衷。理论分析证明了该方法的合理性。仿真结果表明,该算法在许多实际应用中都可以实现超分辨率,并且优于其他最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号