首页> 外文期刊>IEEE Transactions on Signal Processing >Deterministic Cramér-Rao Bound for Strictly Non-Circular Sources and Analytical Analysis of the Achievable Gains
【24h】

Deterministic Cramér-Rao Bound for Strictly Non-Circular Sources and Analytical Analysis of the Achievable Gains

机译:严格非圆形源的确定性Cramér-Rao界和可实现的增益分析

获取原文
获取原文并翻译 | 示例

摘要

Recently, several high-resolution parameter estimation algorithms have been developed to exploit the structure of strictly second-order (SO) non-circular (NC) signals. They achieve a higher estimation accuracy and can resolve up to twice as many signal sources compared to the traditional methods for arbitrary signals. As a benchmark for these NC methods, we derive the closed-form deterministic $R$ -D NC Cramér-Rao bound (NC CRB) for the multi-dimensional parameter estimation of strictly non-circular (rectilinear) signal sources in this paper. Assuming a separable centro-symmetric $R$-D array, we show that in some special cases, the deterministic $R$-D NC CRB reduces to the existing deterministic $R$-D CRB for arbitrary signals. This suggests that no gain from strictly non-circular sources (NC gain) can be achieved under the deterministic data assumption in these cases. For more general scenarios, finding an analytical expression of the NC gain for an arbitrary number of sources is very challenging. Thus, in this paper, we simplify the derived NC CRB and the existing CRB for the special case of two closely-spaced strictly non-circular sources captured by a uniform linear array (ULA). Subsequently, we use these simplified CRB expressions to analytically compute the maximum achievable asymptotic NC gain for the considered two source case. The resulting expression only depends on the various physical parameters and we find the conditions that provide the largest NC gain. Our analysis is supported by extensive simulation results.
机译:最近,已经开发了几种高分辨率参数估计算法,以利用严格的二阶(SO)非圆形(NC)信号的结构。与用于任意信号的传统方法相比,它们可以实现更高的估计精度,并且最多可以解析两倍的信号源。作为这些NC方法的基准,我们导出了用于严格非圆形(直线)信号源的多维参数估计的闭合形式确定性$ R $ -D NCCramér-Rao界(NC CRB)。假设有一个可分离的中心对称$ R $ -D数组,我们表明在某些特殊情况下,确定性$ R $ -D NC CRB可以简化为任意信号的现有确定性$ R $ -D CRB。这表明在这些情况下,在确定性数据假设下无法从严格的非循环源获得增益(NC增益)。对于更一般的情况,找到任意数量来源的NC增益的解析表达式非常具有挑战性。因此,在本文中,对于由均匀线性阵列(ULA)捕获的两个紧密间隔的严格非圆形源的特殊情况,我们简化了派生的NC CRB和现有的CRB。随后,我们使用这些简化的CRB表达式来分析考虑的两个源情况下可实现的最大渐近NC增益。结果表达式仅取决于各种物理参数,并且我们找到了提供最大NC增益的条件。我们的分析得到大量模拟结果的支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号