首页> 外文期刊>IEEE Transactions on Signal Processing >Bayesian Learning of Degenerate Linear Gaussian State Space Models Using Markov Chain Monte Carlo
【24h】

Bayesian Learning of Degenerate Linear Gaussian State Space Models Using Markov Chain Monte Carlo

机译:马尔可夫链蒙特卡洛法退化线性高斯状态空间模型的贝叶斯学习

获取原文
获取原文并翻译 | 示例

摘要

Linear Gaussian state-space models are ubiquitous in signal processing, and an important procedure is that of estimating system parameters from observed data. Rather than making a single point estimate, it is often desirable to conduct Bayesian learning, in which the entire posterior distribution of the unknown parameters is sought. This can be achieved using Markov chain Monte Carlo. On some occasions it is possible to deduce the form of the unknown system matrices in terms of a small number of scalar parameters, by considering the underlying physical processes involved. Here we study the case where this is not possible, and the entire matrices must be treated as unknowns. An efficient Gibbs sampling algorithm exists for the basic formulation of linear model. We extend this to the more challenging situation where the transition model is possibly degenerate, i.e., the transition covariance matrix is singular. Appropriate Markov kernels are devised and demonstrated with simulations.
机译:线性高斯状态空间模型在信号处理中无处不在,一个重要的过程是从观察到的数据估计系统参数的过程。而不是进行单点估计,通常希望进行贝叶斯学习,其中寻求未知参数的整个后验分布。这可以使用马尔可夫链蒙特卡罗实现。在某些情况下,可以通过考虑所涉及的基本物理过程,根据少量标量参数来推导未知系统矩阵的形式。在这里,我们研究不可能的情况,并且必须将整个矩阵视为未知数。对于线性模型的基本公式,存在一种有效的吉布斯采样算法。我们将其扩展到过渡模型可能退化的更具挑战性的情况,即过渡协方差矩阵是奇异的。设计了适当的马尔可夫内核,并通过仿真进行了演示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号