首页> 外文期刊>IEEE Transactions on Signal Processing >Optimal Joint Detection and Estimation Based on Decision-Dependent Bayesian Cost
【24h】

Optimal Joint Detection and Estimation Based on Decision-Dependent Bayesian Cost

机译:基于决策相关贝叶斯成本的最优联合检测与估计

获取原文
获取原文并翻译 | 示例

摘要

This paper considers the statistical inference problem where both the hypothesis testing and the parameter estimation are of primary interest. With unknown parameters present in each hypothesis, the goal is to detect the true hypothesis and to estimate the unknown parameters simultaneously. In light of the coupling nature of these two subproblems, we adopt the Bayesian estimation cost function that depends on both the detection result and the estimation scheme. We then obtain the optimal joint detector and estimator by minimizing the Bayesian estimation cost subject to the constraint on detection performance. The proposed joint solution not only yields lower estimation cost compared with the method that treats the detection and estimation separately, but also allows for flexible tradeoff between the performances of these two subproblems. In addition, we also extend our framework to the multi-hypothesis scenario, where hypotheses and their associated unknown parameters are present. Finally, we apply the proposed joint detection and estimation framework to the spectrum sensing for cognitive radio, which aims to detect the presence of the primary user and to estimate the noise/interference level at the same time.
机译:本文考虑了假设推论和参数估计都是最重要的统计推断问题。在每个假设中都存在未知参数的情况下,目标是检测真实假设并同时估计未知参数。鉴于这两个子问题的耦合性质,我们采用贝叶斯估计代价函数,该函数同时依赖于检测结果和估计方案。然后,通过在检测性能受到约束的情况下最小化贝叶斯估计成本,从而获得最佳的联合检测器和估计器。与单独处理检测和估计的方法相比,所提出的联合解决方案不仅产生了较低的估计成本,而且还允许在这两个子问题的性能之间进行灵活的权衡。此外,我们还将框架扩展到存在多个假设及其相关未知参数的多重假设场景。最后,我们将提出的联合检测和估计框架应用于认知无线电的频谱感知,其目的是检测主要用户的存在并同时估计噪声/干扰水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号