首页> 外文期刊>IEEE Transactions on Signal Processing >Low-Complexity Algorithms for Low Rank Clutter Parameters Estimation in Radar Systems
【24h】

Low-Complexity Algorithms for Low Rank Clutter Parameters Estimation in Radar Systems

机译:雷达系统低秩杂波参数估计的低复杂度算法

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the problem of the clutter subspace projector estimation in the context of a disturbance composed of a low rank heterogeneous (Compound Gaussian) clutter and white Gaussian noise. In such a context, adaptive processing based on an estimated orthogonal projector onto the clutter subspace (instead of an estimated covariance matrix) requires less samples than classical methods. The clutter subspace estimate is usually derived from the eigenvalue decomposition of a covariance matrix estimate. However, it has been previously shown that a direct maximum likelihood estimator of the clutter subspace projector can be obtained for the considered context. In this paper, we derive two algorithms based on the block majorization-minimization framework to reach this estimator. These algorithms are shown to be computationally faster than the state of the art, with guaranteed convergence. Finally, the performance of the related estimators is illustrated on realistic Space Time Adaptive Processing for airborne radar simulations.
机译:本文针对由低阶异类(复合高斯)杂波和白高斯噪声构成的干扰,解决了杂波子空间投影仪估计的问题。在这种情况下,基于估计的正交投影仪到杂波子空间上的自适应处理(而不是估计的协方差矩阵)比传统方法需要更少的样本。杂乱子空间估计通常是从协方差矩阵估计的特征值分解中得出的。然而,先前已经示出了对于所考虑的上下文可以获得杂波子空间投影仪的直接最大似然估计器。在本文中,我们基于块主化-最小化框架推导了两种算法来达到该估计量。这些算法在计算上比现有技术快,并且保证了收敛性。最后,在机载雷达仿真的现实时空自适应处理中说明了相关估计器的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号