首页> 外文期刊>Signal Processing, IEEE Transactions on >Variational Bayesian Expectation Maximization for Radar Map Estimation
【24h】

Variational Bayesian Expectation Maximization for Radar Map Estimation

机译:雷达地图估计的变分贝叶斯期望最大化

获取原文
获取原文并翻译 | 示例

摘要

For self-localization, a detailed and reliable map of the environment can be used to relate sensor data to static features with known locations. This paper presents a method for construction of detailed radar maps that describe the expected intensity of detections. Specifically, the measurements are modelled by an inhomogeneous Poisson process with a spatial intensity function given by the sum of a constant clutter level and an unnormalized Gaussian mixture. A substantial difficulty with radar mapping is the presence of data association uncertainties, i.e., the unknown associations between measurements and landmarks. In this paper, the association variables are introduced as hidden variables in a variational Bayesian expectation maximization (VBEM) framework, resulting in a computationally efficient mapping algorithm that enables a joint estimation of the number of landmarks and their parameters.
机译:对于自我定位,可以使用详细而可靠的环境图来将传感器数据与具有已知位置的静态特征相关联。本文提出了一种用于构造详细雷达图的方法,该方法描述了预期的探测强度。具体而言,通过不均匀的泊松过程对测量进行建模,泊松过程具有由恒定杂波水平和未归一化的高斯混合之和给出的空间强度函数。雷达测绘的一个主要困难是存在数据关联不确定性,即测量值和地标之间的未知关联。在本文中,将关联变量作为变量在贝叶斯期望最大化(VBEM)框架中引入,从而产生了一种计算效率高的映射算法,该算法能够联合估计界标的数量及其参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号