首页> 外文期刊>Signal Processing, IEEE Transactions on >Distributed Sequential Detection for Gaussian Shift-in-Mean Hypothesis Testing
【24h】

Distributed Sequential Detection for Gaussian Shift-in-Mean Hypothesis Testing

机译:高斯均值假设检验中的分布式顺序检测

获取原文
获取原文并翻译 | 示例

摘要

This paper studies the problem of sequential Gaussian shift-in-mean hypothesis testing in a distributed multi-agent network. A sequential probability ratio test (SPRT) type algorithm in a distributed framework of the consensus+innovations form is proposed, in which the agents update their decision statistics by simultaneously processing latest observations (innovations) sensed sequentially over time and information obtained from neighboring agents (consensus). For each pre-specified set of type I and type II error probabilities, local decision parameters are derived which ensure that the algorithm achieves the desired error performance and terminates in finite time almost surely (a.s.) at each network agent. Large deviation exponents for the tail probabilities of the agent stopping time distributions are obtained and it is shown that asymptotically (in the number of agents or in the high signal-to-noise-ratio regime) these exponents associated with the distributed algorithm approach that of the optimal centralized detector. The expected stopping time for the proposed algorithm at each network agent is evaluated and is benchmarked with respect to the optimal centralized algorithm. The efficiency of the proposed algorithm in the sense of the expected stopping times is characterized in terms of network connectivity. Finally, simulation studies are presented which illustrate and verify the analytical findings.
机译:本文研究了分布式多主体网络中顺序高斯均值漂移假设检验的问题。提出了一种在共识+创新形式的分布式框架中的顺序概率比率测试(SPRT)类型算法,其中,代理通过同时处理随时间推移顺序感测到的最新观察值(创新)和从相邻代理获得的信息来更新其决策统计信息(共识)。对于类型I和类型II错误概率的每个预先指定的集合,导出本地决策参数,这些参数确保算法实现所需的错误性能并几乎肯定地在每个网络代理终止于一定的时间。获得了针对代理停止时间分布的尾部概率的大偏差指数,结果表明,与分布式算法相关联的这些指数渐近地(在代理数量或高信噪比条件下)接近于最佳的集中式探测器。针对每个网络代理,针对该算法的预期停止时间进行了评估,并针对最佳集中式算法进行了基准测试。在预期的停止时间的意义上,提出的算法的效率以网络连接性为特征。最后,给出了仿真研究,这些仿真研究说明并验证了分析结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号