首页> 外文期刊>IEEE Transactions on Signal Processing >Optimal Joint Remote Radio Head Selection and Beamforming Design for Limited Fronthaul C-RAN
【24h】

Optimal Joint Remote Radio Head Selection and Beamforming Design for Limited Fronthaul C-RAN

机译:有限前传C-RAN的最优联合远程无线电头选择和波束成形设计

获取原文
获取原文并翻译 | 示例

摘要

This paper considers the downlink transmission of cloud-radio access networks (C-RANs) with limited fronthaul capacity. We formulate a joint design of remote radio head (RRH) selection, RRH-user association, and transmit beamforming for simultaneously optimizing the achievable sum rate and total power consumption, using the multiobjective optimization concept. Due to the nonconvexity of perfronthaul capacity constraints and introduced binary selection variables, the formulated problem lends itself to a mixed-integer nonconvex program, which is generally non-deterministic polynomial-time hard. Motivated by powerful computing capability of C-RAN and for benchmarking purposes, we propose a branch and reduce and bound-based algorithm to attain a globally optimal solution. For more practically appealing approaches, we then propose three iterative low-complexity algorithms. In the first method, we iteratively approximate the continuous nonconvex constraints by convex conic ones using successive convex approximation framework. More explicitly, the problem obtained at each iteration is a mixed-integer second-order cone program (MI-SOCP) for which dedicated solvers are available. In the second method, we first relax the binary variables to be continuous to arrive at a sequence of SOCPs and then perform a postprocessing procedure on the relaxed variables to search for a high-performance solution. In the third method, we solve the considered problem in view of sparsity-inducing regularization. Numerical results show that our proposed algorithms converge rapidly and achieve near-optimal performance as well as outperform the known algorithms.
机译:本文考虑了具有有限前传容量的云无线电接入网络(C-RAN)的下行链路传输。我们采用多目标优化概念,制定了远程无线电头(RRH)选择,RRH-用户关联和发射波束成形的联合设计,以同时优化可实现的总速率和总功耗。由于前馈容量约束的不凸性和引入的二进制选择变量,所提出的问题使其适合于混合整数非凸程序,该程序通常是不确定的多项式时间。出于强大的C-RAN计算能力和用于基准测试的目的,我们提出了一种基于分支和约简和界限的算法来获得全局最优解决方案。对于更实用的方法,我们然后提出了三种迭代的低复杂度算法。在第一种方法中,我们使用连续凸逼近框架,通过凸圆锥约束迭代地逼近连续非凸约束。更明确地说,在每次迭代中获得的问题是混合整数二阶锥规划(MI-SOCP),有专用的求解器。在第二种方法中,我们首先将二进制变量放宽以连续以获得一系列SOCP,然后对放松的变量执行后处理过程以寻找高性能的解决方案。在第三种方法中,鉴于稀疏性导致的正则化,我们解决了所考虑的问题。数值结果表明,本文提出的算法收敛迅速,性能接近最佳,并且优于已知算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号