首页> 外文期刊>IEEE Transactions on Signal Processing >Downlink Training Sequence Design for FDD Multiuser Massive MIMO Systems
【24h】

Downlink Training Sequence Design for FDD Multiuser Massive MIMO Systems

机译:FDD多用户大规模MIMO系统的下行链路训练序列设计

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of downlink training sequence design for frequency-division-duplex multiuser massive multiple-input multiple-output systems in the general case where users have distinct spatial correlations. The training sequences leverage spatial correlations and are designed to minimize the channel estimation weighted sum mean square error (MSE) under the assumption that users employ minimum MSE estimators. Noting that the weighted sum MSE function is invariant to unitary rotations of its argument, a solution is obtained using a steepest descent method on the Grassmannian manifold. We extend the proposed design to scenarios with temporal correlations combined with Kalman filters at the users, and design sequences exploiting the multiuser spatio-temporal channel structure. Finally, we consider scenarios where only a limited number of bits B are available at the base station (BS) to inform the users of each chosen sequence, e.g., sequences are chosen from a set of 2B vectors known to the BS and users, and develop a subspace version of matching pursuit techniques to choose the desired sequences. Simulation results using realistic channel models show that the proposed solutions improve user fairness with a proper choice of weights, lead to accurate channel estimates with training durations that can be much smaller than the number of BS antennas, and show substantial gains over randomly chosen sequences for even small values of B.
机译:在用户具有明显空间相关性的一般情况下,我们考虑频分双工多用户大规模多输入多输出系统的下行链路训练序列设计问题。训练序列利用空间相关性,并被设计为在用户使用最小MSE估计量的假设下将信道估计加权和均方误差(MSE)最小化。注意到加权和MSE函数对于其自变量的单位旋转是不变的,使用格拉斯曼流形上的最速下降方法获得了一个解。我们将提出的设计扩展到具有时间相关性的场景,并在用户处结合了Kalman滤波器,并利用多用户时空信道结构设计了序列。最后,我们考虑这样的情况:基站(BS)只能使用有限数量的比特B来通知用户每个选择的序列,例如,从BS和用户已知的2B向量集合中选择序列,以及开发匹配追踪技术的子空间版本以选择所需的序列。使用现实信道模型的仿真结果表明,所提出的解决方案通过适当选择权重可提高用户公平性,可提供训练时间长于BS天线数量的准确信道估计,并且在随机选择的序列上显示出可观的收益即使是很小的B

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号