首页> 外文期刊>Signal Processing, IEEE Transactions on >Low-Computing-Load, High-Parallelism Detection Method Based on Chebyshev Iteration for Massive MIMO Systems With VLSI Architecture
【24h】

Low-Computing-Load, High-Parallelism Detection Method Based on Chebyshev Iteration for Massive MIMO Systems With VLSI Architecture

机译:具有Chebyshev迭代的低运算量,高并行度的大规模VLSI体系结构MIMO系统检测方法

获取原文
获取原文并翻译 | 示例

摘要

Minimum-mean-square-error (MMSE) detection is becoming increasingly relevant in signal detection for massive multiple-input-multiple-output systems because of the increasing numbers of both users and antennas. This paper proposes a signal detection method called parallelizable Chebyshev iteration (PCI) that reduces the computing load and explores the potential parallelism of matrix inversions and multiplications, which are both major issues in MMSE detection. First, an eigenvalue-approximation-based method is used to obtain an initial solution. Then, optimized Chebyshev iteration is applied for the approximate computation of matrix inversions and multiplications. The number of multiplications is reduced from mathcal {O}(BU^2+U^3)O(BU2+U3) to mathcal {O}(KBU)O(KBU), where BB, UU, and KK are the numbers of antennas, users and iterations, respectively. The PCI method eliminates the correlations in large-scale matrix inversions and multiplications, thereby improving the parallelism among elements of the estimated vector. These improvements are achieved at the cost of a minor reduction in detection accuracy. Based on the PCI method, a very-large-scale-integration fully pipelined architecture is proposed to realize 128 times× 16 64-QAM MMSE detection. Here, the iterative parameters are obtained through approximate computations and are used repeatedly, and the user-level pipeline processing pattern achieves an optimal tradeoff among the throughput, area, and power. This architecture was verified on an FPGA, and the layout was implemented using TSMC 65 nm 1P9M CMOS technology. Results of 2.46 Gbps/W (throughput/power) and 0.53 Gbps/mm^22 (throughput/area) were obtained, which represent increases of 4.56 times× and 3.79times×, respectively, compared with current state-of-the-art designs.
机译:由于大量的用户和天线,最小均方误差(MMSE)检测在大规模多输入多输出系统的信号检测中变得越来越重要。本文提出了一种称为并行化Chebyshev迭代(PCI)的信号检测方法,该方法可减少计算量,并探索矩阵求逆和乘法的潜在并行性,这都是MMSE检测中的主要问题。首先,使用基于特征值近似的方法获得初始解。然后,将优化的Chebyshev迭代应用于矩阵求逆和乘法的近似计算。乘法次数从数学{O}(BU ^ 2 + U ^ 3)O(BU2 + U3)减少为数学{O}(KBU)O(KBU),其中BB,UU和KK是天线,用户和迭代。 PCI方法消除了大规模矩阵求逆和乘法运算中的相关性,从而改善了估计矢量元素之间的并行性。这些改进是以稍微降低检测精度为代价的。基于PCI方法,提出了一种超大规模集成的全流水线架构,可实现128×16 64-QAM MMSE检测。此处,迭代参数是通过近似计算获得的,并且可以重复使用,并且用户级管道处理模式可在吞吐量,面积和功率之间实现最佳折衷。该架构已在FPGA上进行了验证,并且布局是使用TSMC 65 nm 1P9M CMOS技术实现的。获得了2.46 Gbps / W(吞吐量/功率)和0.53 Gbps / mm ^ 22(吞吐量/面积)的结果,与当前的最新水平相比,分别提高了4.56倍和3.79倍。设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号