首页> 外文期刊>Signal Processing, IEEE Transactions on >Finite-Resolution Effects in p -Leader Multifractal Analysis
【24h】

Finite-Resolution Effects in p -Leader Multifractal Analysis

机译:p领导多重分形分析中的有限分辨率效应

获取原文
获取原文并翻译 | 示例

摘要

Multifractal analysis has become a standard signal processing tool, for which a promising new formulation, the pleader multifractal formalism, has recently been proposed. It relies on novel multiscale quantities, the p-leaders, defined as local ℓp norms of sets of wavelet coefficients located at infinitely many fine scales. Computing such infinite sums from actual finite-resolution data requires truncations to the finest available scale, which results in biased p-leaders and thus in inaccurate estimates of multifractal properties. A systematic study of such finite-resolution effects leads to conjecture an explicit and universal closed-form correction that permits an accurate estimation of scaling exponents. This conjecture is formulated from the theoretical study of a particular class of models for multifractal processes, the wavelet-based cascades. The relevance and generality of the proposed conjecture is assessed by numerical simulations conducted over a large variety of multifractal processes. Finally, the relevance of the proposed corrected estimators is demonstrated on the analysis of heart rate variability data.
机译:多重分形分析已成为一种标准的信号处理工具,最近提出了一种有前途的新公式,即pleader多重分形形式主义。它依赖于新颖的多尺度量p导数,p导数定义为位于无限多个精细尺度上的小波系数集的局部ℓp范数。从实际的有限分辨率数据中计算出这样的无限大的总和需要将其截断到最好的可用尺度,这会导致p导数出现偏差,从而导致多重分形特性的估计不准确。对这种有限分辨率效果的系统研究导致推测出一个显式且通用的闭合形式校正,该校正允许精确估计缩放指数。这个猜想是根据一类特定的多分形过程模型(基于小波的级联)的理论研究得出的。通过对多种多重分形过程进行数值模拟,可以评估所提出猜想的相关性和普遍性。最后,在心率变异性数据的分析中证明了所提出的校正估计量的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号