首页> 外文期刊>IEEE Transactions on Signal Processing >Distributed Fusion With Multi-Bernoulli Filter Based on Generalized Covariance Intersection
【24h】

Distributed Fusion With Multi-Bernoulli Filter Based on Generalized Covariance Intersection

机译:广义协方差相交的多伯努利滤波器分布式融合

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a distributed multiobject tracking algorithm through the use of multi-Bernoulli (MB) filter based on generalized covariance intersection (G-CI). Our analyses show that the G-CI fusion with two MB posterior distributions does not admit an accurate closed-form expression. To solve this problem, we first approximate the fused posterior as the unlabeled version of δ -generalized labeled MB distribution, referred to as generalized MB (GMB) distribution. Then, to allow the subsequent fusion with another MB posterior distribution, e.g., fusion with a third sensor node in the sensor network, or fusion in the feedback working mode, we further approximate the fused GMB posterior distribution as an MB distribution which matches its first-order statistical moment. The proposed fusion algorithm is implemented using sequential Monte Carlo technique and its performance is highlighted by numerical results.
机译:本文提出了一种基于广义协方差交点(G-CI)的多伯努利(MB)过滤器的分布式多目标跟踪算法。我们的分析表明,具有两个MB后部分布的G-CI融合体不能接受精确的闭合形式表达。为解决此问题,我们首先将融合后验近似为δ广义标记MB分布的未标记版本,称为广义MB(GMB)分布。然后,为了允许随后与另一个MB后验分布融合,例如与传感器网络中的第三个传感器节点融合,或者在反馈工作模式下进行融合,我们进一步将融合的GMB后验分布近似为与其第一个匹配的MB分布阶统计矩。所提出的融合算法是采用顺序蒙特卡洛技术实现的,其性能通过数值结果得到了突出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号