首页> 外文期刊>IEEE Transactions on Signal Processing >Joint Optimization of Power and Data Transfer in Multiuser MIMO Systems
【24h】

Joint Optimization of Power and Data Transfer in Multiuser MIMO Systems

机译:多用户MIMO系统中功率和数据传输的联合优化

获取原文
获取原文并翻译 | 示例

摘要

We present an approach to solve the nonconvex optimization problem that arises when designing the transmit covariance matrices in multiuser multiple-input multiple-output (MIMO) broadcast networks implementing simultaneous wireless information and power transfer (SWIPT). The MIMO SWIPT problem is formulated as a general multiobjective optimization problem, in which data rates and harvested powers are optimized simultaneously. Two different approaches are applied to reformulate the (nonconvex) multiobjective problem. In the first approach, the transmitter can control the specific amount of power to be harvested by power transfer whereas in the second approach the transmitter can only control the proportion of power to be harvested among the different harvesting users. We solve the resulting formulations using the majorization-minimization (MM) approach. The solution obtained from the MM approach is compared to the classical block-diagonalization (BD) strategy, typically used to solve the nonconvex multiuser MIMO network by forcing no interference among users. Simulation results show that the proposed approach improves over the BD approach both the system sum rate and the power harvested by users. Additionally, the computational times needed for convergence of the proposed methods are much lower than the ones required for classical gradient-based approaches.
机译:我们提出一种方法来解决在设计同时实现无线信息和功率传输(SWIPT)的多用户多输入多输出(MIMO)广播网络中的传输协方差矩阵时出现的非凸优化问题。 MIMO SWIPT问题被表述为通用的多目标优化问题,其中,同时优化数据速率和收集的功率。应用了两种不同的方法来重新表述(非凸)多目标问题。在第一种方法中,发送器可以控制要通过功率传输收集的特定功率量,而在第二种方法中,发送器只能控制要在不同收集用户之间收集的功率比例。我们使用最大化-最小化(MM)方法求解所得公式。从MM方法获得的解决方案与经典块对角化(BD)策略进行了比较,该策略通常用于通过不强迫用户之间的干扰来解决非凸多用户MIMO网络。仿真结果表明,与BD方法相比,所提方法在系统求和率和用户功率上均得到了提高。另外,所提出方法的收敛所需的计算时间比经典的基于梯度的方法所需的计算时间低得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号