首页> 外文期刊>IEEE Transactions on Robotics >Hardware-in-the-Loop Iterative Optimal Feedback Control Without Model-Based Future Prediction
【24h】

Hardware-in-the-Loop Iterative Optimal Feedback Control Without Model-Based Future Prediction

机译:无需基于模型的未来预测的硬件在环迭代式最优反馈控制

获取原文
获取原文并翻译 | 示例

摘要

Optimal control provides a systematic approach to control robots. However, computing optimal controllers for hardware-in-the-loop control is sensitively affected by modeling assumptions, computationally expensive in online implementation, and time-consuming in practical application. This makes the theoretical appeal of optimization challenging to exploit in real-world implementation. In this paper, we present a novel online optimal control formulation that aims to address the above-mentioned limitations. The formulation combines a model with measured state information to efficiently find near-optimal feedback controllers. The idea to combine a model with measurements from the actual motion is similar to what is used in model predictive control formulations, with the difference that here the model is not used for future prediction, the optimization is performed along the measured trajectory of the system, and the online computation is reduced to a minimum; it requires a small-scale, one time step, static optimization, instead of a large-scale, finite time horizon, dynamic optimization. The formulation can be used to solve optimal control problems defined with nonlinear cost, nonlinear dynamics, and box-constrained control inputs. Numerical simulations and hardware-in-the-loop experiments demonstrate the effectiveness of the proposed hardware-in-the-loop optimal control approach.
机译:最优控制为控制机器人提供了系统的方法。但是,为建模中的假设敏感地影响计算用于硬件在环控制的最佳控制器,在线实现在计算上昂贵,并且在实际应用中耗时。这使得优化的理论吸引力难以在现实世界中实施。在本文中,我们提出了一种新颖的在线最优控制公式,旨在解决上述局限性。该公式将模型与测量的状态信息结合在一起,可以有效地找到接近最佳的反馈控制器。将模型与实际运动的测量结果结合起来的想法类似于模型预测控制公式中所使用的想法,不同之处在于,此处不将模型用于将来的预测,而是沿着系统的测量轨迹进行优化,在线计算量降到最低;它需要一个小规模,一个时间步长的静态优化,而不是大规模,有限时间范围的动态优化。该公式可用于解决由非线性成本,非线性动力学和盒约束控制输入定义的最优控制问题。数值仿真和半实物实验证明了所提出的半实物最优控制方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号