首页> 外文期刊>Robotics, IEEE Transactions on >An Adaptive Automated Robotic Task-Practice System for Rehabilitation of Arm Functions After Stroke
【24h】

An Adaptive Automated Robotic Task-Practice System for Rehabilitation of Arm Functions After Stroke

机译:用于中风后手臂功能康复的自适应自动机器人任务练习系统

获取原文
获取原文并翻译 | 示例

摘要

We present a novel robotic task-practice system, i.e., adaptive and automatic presentation of tasks (ADAPT), which is designed to enhance the recovery of upper extremity functions in patients with stroke. We designed ADAPT in accordance with current training guidelines for stroke rehabilitation; ADAPT engages the patient intensively, actively, and adaptively in a variety of realistic functional tasks that require reaching and manipulation. A general-purpose robot simulates the dynamics of the functional tasks and presents these functional tasks to the patient. A novel tool-changing system enables ADAPT to automatically switch between the tools corresponding to the functional tasks. The control architecture of ADAPT is composed of three main components: a high-level task scheduler, a functional task model, and a low-level admittance controller. The high-level task scheduler adaptively selects the task to practice and sets the task difficulty based on the previous performance of the patients. The functional task model generates desired trajectories based on learned models of task dynamics. Tasks dynamics are modeled with receptive field weighted regression (RFWR), such that the feel of the task tools is accurately modeled, and the task difficulty can be easily adjusted. The low-level admittance controller, which is also learned with RFWR, implements the selected task trajectory for robot-patient interaction. The results of a preliminary experiment with a healthy subject demonstrate the successful operation of ADAPT.
机译:我们提出了一种新颖的机器人任务实践系统,即任务的自适应和自动呈现(ADAPT),旨在增强卒中患者上肢功能的恢复。我们根据当前的中风康复培训指南设计了ADAPT; ADAPT将患者集中,主动和自适应地投入到各种需要伸手可及的实际功能任务中。通用机器人模拟功能任务的动态并将这些功能任务呈现给患者。新颖的工具更换系统使ADAPT能够在与功能任务相对应的工具之间自动切换。 ADAPT的控制体系结构由三个主要组件组成:高级任务调度程序,功能任务模型和低级导纳控制器。高级任务计划程序根据患者的先前表现自适应地选择要练习的任务并设置任务难度。功能任务模型基于学习到的任务动力学模型生成所需的轨迹。使用接收域加权回归(RFWR)对任务动力学进行建模,从而可以精确地对任务工具的感觉进行建模,并且可以轻松地调整任务难度。低级导纳控制器(也可以通过RFWR来学习)实现用于机器人与患者交互的选定任务轨迹。一项针对健康受试者的初步实验结果证明了ADAPT的成功运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号