首页> 外文期刊>IEEE Transactions on Robotics >Topological Mapping and Scene Recognition With Lightweight Color Descriptors for an Omnidirectional Camera
【24h】

Topological Mapping and Scene Recognition With Lightweight Color Descriptors for an Omnidirectional Camera

机译:用于全向摄像机的带有轻量级颜色描述符的拓扑映射和场景识别

获取原文
获取原文并翻译 | 示例

摘要

Scene recognition problems for mobile robots have been extensively studied. This is important for tasks such as visual topological mapping. Usually, sophisticated key-point-based descriptors are used, which can be computationally expensive. In this paper, we describe a lightweight novel scene recognition method using an adaptive descriptor, which is based on color features and geometric information that are extracted from an uncalibrated omnidirectional camera. The proposed method enables a mobile robot to perform online registration of new scenes onto a topological representation automatically and solve the localization problem to topological regions simultaneously, all in real time. We adopt a Dirichlet process mixture model (DPMM) to describe the online inference process. It is based on an approximation of conditional probabilities of the new measurements given incrementally estimated reference models. It enables online inference speeds of up to 50 Hz for a normal CPU. We compare it with state-of-the-art key-point descriptors and show the advantage of the proposed algorithm in terms of performance and computational efficiency. A real-world experiment is carried out with a mobile robot equipped with an omnidirectional camera. Finally, we show the results on extended datasets.
机译:对于移动机器人的场景识别问题已经进行了广泛的研究。这对于诸如视觉拓扑映射之类的任务很重要。通常,使用复杂的基于关键点的描述符,这可能在计算上很昂贵。在本文中,我们描述了一种使用自适应描述符的轻量级新颖场景识别方法,该方法基于从未经校准的全向相机中提取的颜色特征和几何信息。所提出的方法使移动机器人能够自动将新场景在线注册到拓扑表示上,并同时实时地解决对拓扑区域的定位问题。我们采用Dirichlet过程混合模型(DPMM)来描述在线推理过程。它基于给定增量估计的参考模型的新测量的条件概率的近似值。对于普通CPU,它可以实现高达50 Hz的在线推断速度。我们将其与最新的关键点描述符进行比较,并在性能和计算效率方面展示了所提出算法的优势。使用配备了全向摄像机的移动机器人进行了真实世界的实验。最后,我们在扩展数据集上显示结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号