首页> 外文期刊>Robotics, IEEE Transactions on >Negative Information for Occlusion Reasoning in Dynamic Extended Multiobject Tracking
【24h】

Negative Information for Occlusion Reasoning in Dynamic Extended Multiobject Tracking

机译:动态扩展多目标跟踪中用于遮挡推理的负信息

获取原文
获取原文并翻译 | 示例

摘要

A novel approach to utilize information to improve the precision and accuracy of extended multiobject tracking is presented. The parameterized probability density of object tracks undetected in sensor data is updated via inferences about the conditions necessary to result in occlusion of the undetected object. Negative information is also leveraged to inform track existence and data association, both of which contribute to a more sensible belief of the local dynamic scene. Simulation and experimental results are presented from autonomous driving scenarios, demonstrating that the use of negative information leads to a more complete, accurate, precise, and intuitive belief of the local scene, enabling high-level tasks that would otherwise be impractical.
机译:提出了一种利用信息来提高扩展多目标跟踪的精度和准确性的新颖方法。传感器数据中未检测到的目标轨迹的参数化概率密度通过有关导致未检测到的目标被遮挡的必要条件的推断来更新。负信息也被用来告知轨道的存在和数据关联,这两者都有助于对局部动态场景的更明智的把握。在自动驾驶场景中提供了仿真和实验结果,表明使用负面信息可以使人们对本地场景更加完整,准确,准确和直观地把握,从而可以执行否则将是不切实际的高级任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号