首页> 外文期刊>IEEE Transactions on Robotics >Supervised and Unsupervised Linear Learning Techniques for Visual Place Recognition in Changing Environments
【24h】

Supervised and Unsupervised Linear Learning Techniques for Visual Place Recognition in Changing Environments

机译:在变化的环境中用于视觉位置识别的有监督和无监督线性学习技术

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the application of linear learning techniques to the place recognition problem. We present two learning methods, a supervised change prediction technique based on linear regression and an unsupervised change removal technique based on principal component analysis, and investigate how the performance of each is affected by the choice of training data. We show that the change prediction technique presented here succeeds only if it is provided with appropriate and adequate training data, which can be challenging for a mobile robotic system operating in an uncontrolled environment. In contrast, change removal can improve place recognition performance even when trained with as few as 100 samples. This paper shows that change removal can be combined with a number of different image descriptors and can improve performance across a range of different appearance conditions.
机译:本文研究了线性学习技术在位置识别问题中的应用。我们提出两种学习方法,一种基于线性回归的有监督的变化预测技术和一种基于主成分分析的无监督的变化消除技术,并研究训练数据的选择如何影响每种方法的性能。我们表明,此处提供的变化预测技术只有在获得适当且足够的训练数据的情况下才能成功,这对于在不受控制的环境中运行的移动机器人系统可能是具有挑战性的。相反,即使仅使用100个样本进行训练,更改消除也可以提高位置识别性能。本文表明,变更消除可以与许多不同的图像描述符结合使用,并且可以在一系列不同的外观条件下提高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号