首页> 外文期刊>IEEE Transactions on Reliability >Performance of parameter-estimates in step-stress acceleratedlife-tests with various sample-sizes
【24h】

Performance of parameter-estimates in step-stress acceleratedlife-tests with various sample-sizes

机译:各种样本量的步进应力加速寿命试验中参数估计的性能

获取原文
获取原文并翻译 | 示例

摘要

In accelerated life test (ALT) studies, the maximum likelihoodn(ML) method is commonly used in estimating model parameters, and itsnasymptotic variance is the key quantity used in searching for thenoptimum design of ALT plans and in making statistical inferences. Thisnpaper uses simulation techniques to investigate the required sample sizenfor using the large sample Gaussian approximation s-confidence intervalnand the properties of the ML estimators in the finite sample situationnwith different fitting models. Both the likelihood function and itsnsecond derivatives needed for calculating the asymptotic variance arenvery complicated. This paper shows that a sample size of 100 is needednin practice for using large-sample inference procedures. When the modelnis Weibull with a constant shape parameter, fitting exponential modelsncan perform poorly in large-sample cases, and fitting Weibull modelsnwith a regression function of shape parameters can give undesirablenresults in small-sample situations. When small fractions of thenproduct-life distribution are used to establish warranties and servicenpolices, the interests of the producer and consumer should be balancednwith the resources available for conducting life tests. From thenstandpoint of safety, an unrealistically long projected service lifencould harm the consumer. Establishing a short warranty period protectsnthe producer but hurts revenue. An overly generous warranty period couldncost the producer in terms of product replacement. To estimatenlife-distribution parameters well, use more than 100 samples in for LSCInand life-testing plans derived from the asymptotic theory. When thenmodel becomes complicated, as in this paper, monitor the convergence ofnthe parameter estimation algorithm, and do not trust the computernoutputs blindly. In many applications, the likelihood ratio testninverted confidence interval performs better than the usual approximatenconfidence interval in small samples; thus its performance in thenstep-stress ALT studies should be in future research
机译:在加速寿命试验(ALT)研究中,通常使用最大似然(ML)方法估计模型参数,其渐近方差是搜索ALT计划的最佳设计和进行统计推断时使用的关键量。本文采用仿真技术研究了使用大样本高斯近似s-置信区间n和具有不同拟合模型的有限样本情况下ML估计量的性质所需的样本量n。计算渐近方差所需的似然函数及其二阶导数都非常复杂。本文表明,在实践中,使用大样本推理程序需要样本大小为100。当具有恒定形状参数的模型Weibull拟合时,指数模型在大样本情况下的性能较差,而具有形状参数回归函数的Weibull模型拟合在小样本情况下会产生不良结果。当使用一小部分产品寿命分布来建立保修和服务政策时,应利用进行寿命测试的可用资源来平衡生产者和消费者的利益。从安全的角度出发,过长的预期使用寿命可能会损害消费者。建立较短的保修期可以保护生产者,但会损害收入。过长的保修期可能不会使生产商付出产品更换的费用。为了很好地估计寿命分布参数,请使用100多个样本用于LSCIn和从渐近理论得出的寿命测试计划。当模型变得复杂时,如本文所述,监视参数估计算法的收敛性,不要盲目地相信计算机的输出。在许多应用中,小样本中似然比检验的置信区间表现优于通常的近似置信区间。因此,其在逐步压力ALT研究中的表现应在未来研究中

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号