首页> 外文期刊>IEEE Transactions on Reliability >Circular Layout Cutsets: An Approach for Improving Consecutive Cutset Bounds for Network Reliability
【24h】

Circular Layout Cutsets: An Approach for Improving Consecutive Cutset Bounds for Network Reliability

机译:圆形布局切割集:一种提高连续切割集边界以提高网络可靠性的方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce a new type of parameterized class of cutsets for the 2-terminal network reliability problem, called the circular layout (CL) cutsets with parameter k, and devise a polynomial time algorithm for computing upper bounds from such structures. The CL cutsets, and the devised bounding method are characterized by the following aspects. 1) CL cutsets include the well known class of consecutive minimal cutsets, introduced by Shanthikumar, as a proper subset. Thus, bounds obtained by our main algorithm yield strict improvements on the basic consecutive cutsets algorithm. We note that extensive empirical studies done to date have shown that the consecutive cutsets method, when empowered by heuristics for choosing suitable cutsets, yields competitive bounds. 2) CL cutsets satisfy the semilattice structure required by Shier's algorithm for computing upper bounds in time polynomial in the number of cuts in a given cutset. Thus, CL cutsets define a new class of efficiently constructible cutsets of polynomial size that benefit from such generalized algorithm. 3) For any fixed value of the parameter k, the devised bounding method can be adapted to satisfy stringent constant-time update constraints, required by the most probable state algorithm of Colbourn & Harms , for obtaining iteratively improvable bounds, without adding significant time overhead to the method. Moreover, the devised bounding algorithm is easy to implement, and the obtained numerical results show more than a 32% improvement over bounds obtained by the basic consecutive cutsets algorithm
机译:在本文中,我们针对2终端网络可靠性问题引入了一种新型的参数化割集类型,称为带有参数k的圆形布局(CL)割集,并设计了多项式时间算法来计算此类结构的上限。 CL割集和设计的包围方法的特征在于以下几个方面。 1)CL割集包括Shanthikumar作为适当子集引入的众所周知的连续最小割集。因此,由我们的主要算法获得的边界对基本连续割集算法产生了严格的改进。我们注意到,迄今为止进行的大量经验研究表明,连续启发式方法在通过启发式方法选择合适的cutsets时具有竞争优势。 2)CL割集满足Shier算法所需的半格结构,该算法用于计算给定割集中割数的时间多项式上限。因此,CL割集定义了受益于这种通用算法的一类新的可有效构造的多项式大小的割集。 3)对于参数k的任何固定值,可以采用设计的边界方法来满足严格的恒定时间更新约束,这是Colbourn&Harms最有可能的状态算法所要求的,以获得迭代可改进的边界,而不会增加大量的时间开销的方法。而且,所设计的边界算法易于实现,并且所获得的数值结果表明,与基本连续割集算法所获得的边界相比,改进了32%以上

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号