首页> 外文期刊>Reliability, IEEE Transactions on >A Convolution Universal Generating Function Method for Evaluating the Symbolic One-to-All-Target-Subset Reliability Function of Acyclic Multi-State Information Networks
【24h】

A Convolution Universal Generating Function Method for Evaluating the Symbolic One-to-All-Target-Subset Reliability Function of Acyclic Multi-State Information Networks

机译:一种卷积通用生成函数方法,用于评估非循环多状态信息网络的符号化所有目标子集可靠性函数

获取原文
获取原文并翻译 | 示例

摘要

The acyclic multi-state information network (AMIN) is an extension of the multi-state network without having to satisfy the flow conservation law. A very straightforward convolution universal generating function method (CUGFM) is developed to find the exact symbolic one-to-all-target-subset reliability function of AMIN. The correctness and computational complexity of the proposed algorithm will be proven. Two illustrative examples demonstrate the power of the proposed CUGFM to solve the exact symbolic reliability functions of the one-to-all-target-subset AMIN problem more efficiently than the best-known UGFM.
机译:非循环多状态信息网络(AMIN)是多状态网络的扩展,无需满足流量守恒定律。开发了一种非常简单的卷积通用生成函数方法(CUGFM),以找到AMIN的精确符号化“对所有目标子集”可靠性函数。将证明所提出算法的正确性和计算复杂性。两个说明性示例证明了所提出的CUGFM能够比最著名的UGFM更有效地解决“全部目标子集” AMIN问题的精确符号可靠性函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号