首页> 外文期刊>Reliability, IEEE Transactions on >Monte Carlo Methods for Reliability Evaluation of Linear Sensor Systems
【24h】

Monte Carlo Methods for Reliability Evaluation of Linear Sensor Systems

机译:线性传感器系统可靠性评估的蒙特卡洛方法

获取原文
获取原文并翻译 | 示例

摘要

A linear sensor system is defined as a sensor system in which the sensor measurements have a linear relationship to source variables that cannot be directly measured. Evaluation of the reliability of a general linear sensor system is a #P problem whose computational time increases exponentially with the increment of the number of sensors. To overcome the computational complexity, Monte Carlo methods are developed in this paper to approximate the sensor system's reliability. The crude Monte Carlo method is not efficient when the sensor system is highly reliable. A Monte Carlo method that has been improved for network reliability, known as the Recursive Variance Reduction (RVR) method, is further adapted for the reliability problem of linear sensor systems. To apply the RVR method, new methods are proposed to obtain minimal cut sets of the linear sensor system, particularly under the conditions where the states of some sensors are fixed as failed or functional. A case study in a multistage automotive assembly process is conducted to demonstrate the efficiency of the proposed methods.
机译:线性传感器系统定义为一种传感器系统,其中传感器的测量值与无法直接测量的源变量具有线性关系。评估一般线性传感器系统的可靠性是一个#P问题,其计算时间随着传感器数量的增加而呈指数增长。为了克服计算复杂性,本文开发了蒙特卡洛方法来近似传感器系统的可靠性。当传感器系统高度可靠时,粗糙的蒙特卡洛方法效率不高。已针对网络可靠性进行改进的蒙特卡洛方法(称为递归方差减少(RVR)方法)进一步适用于线性传感器系统的可靠性问题。为了应用RVR方法,提出了新的方法来获得线性传感器系统的最小割集,特别是在某些传感器的状态固定为故障或功能的条件下。进行了多阶段汽车装配过程中的案例研究,以证明所提出方法的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号