首页> 外文期刊>Reliability, IEEE Transactions on >A Framework of Similarity-Based Residual Life Prediction Approaches Using Degradation Histories With Failure, Preventive Maintenance, and Suspension Events
【24h】

A Framework of Similarity-Based Residual Life Prediction Approaches Using Degradation Histories With Failure, Preventive Maintenance, and Suspension Events

机译:一个基于相似性的剩余寿命预测方法框架,该方法使用具有故障,预防性维护和悬架事件的退化历史

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a framework of similarity-based residual life prediction (SbRLP) approaches in which historical samples that fail and do not fail (due to preventive maintenance or suspension) are both utilized. Within the framework, two solutions are proposed to estimate the lifetimes of the preventively maintained or suspended historical samples, and to utilize their degradation histories in a SbRLP approach. An extensive numerical investigation verifies the superiority of the proposed framework using Solution A over the corresponding classical SbRLP approach. In addition, the investigation results reveal that the proposed framework using Solution B is ineffective when failed historical samples are limited, but its performance improves fast with the increment of available failed historical samples. The findings in the numerical investigation suggest the use of the proposed framework using Solution A when failed historical samples are limited, and the use of the proposed framework using Solution B when abundant failed historical samples are available.
机译:本文提出了一种基于相似度的剩余寿命预测(SbRLP)方法的框架,其中使用了失败和不失败的历史样本(由于预防性维护或中止)。在该框架内,提出了两种解决方案来估计预防性维护或暂停的历史样本的寿命,并在SbRLP方法中利用其降解历史。大量的数值研究验证了使用解决方案A提出的框架优于相应的经典SbRLP方法的优越性。此外,调查结果表明,在失败的历史样本有限的情况下,使用解决方案B提出的框架无效,但是随着可用的失败历史样本的增加,其性能会快速提高。数值研究的结果表明,当失败的历史样本受到限制时,可以使用解决方案A提出的框架,而当大量失败的历史样本可用时,可以使用解决方案B提出的框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号