首页> 外文期刊>IEEE Transactions on Reliability >Bayesian Analysis for Accelerated Life Tests Using a Dirichlet Process Weibull Mixture Model
【24h】

Bayesian Analysis for Accelerated Life Tests Using a Dirichlet Process Weibull Mixture Model

机译:利用Dirichlet过程Weibull混合模型进行加速寿命试验的贝叶斯分析

获取原文
获取原文并翻译 | 示例

摘要

This study proposes a semiparametric Bayesian approach to accelerated life test (ALT). The proposed accelerated life test model assumes a log-linear lifetime-stress relationship, without making any assumption on the parametric form of the failure-time distribution. A Dirichlet process mixture model with a Weibull kernel is employed to model the failure-time distribution at a given stress level. A simulation-based model fitting algorithm that implements Gibbs sampling is developed to analyze right-censored ALT data, and to predict the failure-time distribution at the normal stress level. The proposed model and algorithm are applied to two practical examples related to the reliability of nanoelectronic devices. The results have demonstrated that the proposed methodology is capable of providing accurate prediction of the failure-time distribution at the normal stress level without assuming any restrictive parametric failure-time distribution.
机译:这项研究提出了一种半参数贝叶斯方法进行加速寿命测试(ALT)。所提出的加速寿命测试模型假设对数线性寿命-应力关系,而对失效时间分布的参数形式没有任何假设。使用具有威布尔核的Dirichlet过程混合模型对给定应力水平下的失效时间分布进行建模。开发了一种基于仿真的模型拟合算法,该模型实现了Gibbs采样,以分析右删失的ALT数据,并预测法向应力水平下的失效时间分布。所提出的模型和算法被应用于涉及纳米电子器件可靠性的两个实际例子。结果表明,所提出的方法能够在不假定任何限制性参数失效时间分布的情况下,提供在正应力水平下失效时间分布的准确预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号