首页> 外文期刊>IEEE Transactions on Reliability >Detecting and Removing Web Application Vulnerabilities with Static Analysis and Data Mining
【24h】

Detecting and Removing Web Application Vulnerabilities with Static Analysis and Data Mining

机译:通过静态分析和数据挖掘检测和消除Web应用程序漏洞

获取原文
获取原文并翻译 | 示例

摘要

Although a large research effort on web application security has been going on for more than a decade, the security of web applications continues to be a challenging problem. An important part of that problem derives from vulnerable source code, often written in unsafe languages like PHP. Source code static analysis tools are a solution to find vulnerabilities, but they tend to generate false positives, and require considerable effort for programmers to manually fix the code. We explore the use of a combination of methods to discover vulnerabilities in source code with fewer false positives. We combine taint analysis, which finds candidate vulnerabilities, with data mining, to predict the existence of false positives. This approach brings together two approaches that are apparently orthogonal: humans coding the knowledge about vulnerabilities (for taint analysis), joined with the seemingly orthogonal approach of automatically obtaining that knowledge (with machine learning, for data mining). Given this enhanced form of detection, we propose doing automatic code correction by inserting fixes in the source code. Our approach was implemented in the WAP tool, and an experimental evaluation was performed with a large set of PHP applications. Our tool found 388 vulnerabilities in 1.4 million lines of code. Its accuracy and precision were approximately 5% better than PhpMinerII's and 45% better than Pixy's.
机译:尽管有关Web应用程序安全性的大量研究已经进行了十多年,但是Web应用程序的安全性仍然是一个具有挑战性的问题。该问题的重要部分来自易受攻击的源代码,这些源代码通常是用不安全的语言(如PHP)编写的。源代码静态分析工具是一种发现漏洞的解决方案,但是它们往往会产生误报,并且需要程序员付出大量努力才能手动修复代码。我们探索结合使用多种方法来发现具有更少误报的源代码中的漏洞。我们将发现候选漏洞的污点分析与数据挖掘相结合,以预测误报的存在。这种方法汇集了两种看似正交的方法:人类对有关漏洞的知识进行编码(用于污点分析),以及自动获取该知识(使用机器学习进行数据挖掘)的看似正交的方法。考虑到这种增强的检测形式,我们建议通过在源代码中插入修订来进行自动代码校正。我们的方法在WAP工具中实现,并且对大量PHP应用程序进行了实验评估。我们的工具在140万行代码中发现了388个漏洞。它的准确度和精密度比PhpMinerII高约5%,比Pixy高约45%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号