首页> 外文期刊>IEEE Transactions on Reliability >An Approach for the Prediction of Number of Software Faults Based on the Dynamic Selection of Learning Techniques
【24h】

An Approach for the Prediction of Number of Software Faults Based on the Dynamic Selection of Learning Techniques

机译:基于学习技术动态选择的软件故障数量预测方法

获取原文
获取原文并翻译 | 示例

摘要

D etermining the most appropriate learning technique(s) is vital for the accurate and effective software fault prediction (SFP). Earlier techniques used for SFP have reported varying performance for different software projects and none of them has always reported the best performance across different projects. The problem of varying performance can be solved by using an approach, which partitions the fault dataset into different module subsets, trains learning techniques for each subset, and integrates the outcomes of all the learning techniques. This paper presents an approach that dynamically selects learning techniques to predict the number of software faults. For a given testing module, the presented approach first locates its neighbor module subset that contained modules similar to testing module using a distance function and then chooses the best learning technique in the region of that module subset to make the prediction for testing module. The learning technique is selected based on its past performance in the region of module subset. We have performed an evaluation of the proposed approach using fault datasets garnered from the PROMISE data repository and Eclipse bug data repository. Experimental results showed that the proposed approach led to an improved performance when predicting the number of faults in software systems.
机译:确定最合适的学习技术对于准确有效的软件故障预测(SFP)至关重要。用于SFP的早期技术已报告了不同软件项目的不同性能,但没有一个总是在不同项目中报告最佳性能的。可以通过使用一种方法来解决性能变化的问题,该方法将故障数据集划分为不同的模块子集,为每个子集训练学习技术,并整合所有学习技术的结果。本文提出了一种动态选择学习技术以预测软件故障数量的方法。对于给定的测试模块,所提出的方法首先使用距离函数找到包含类似于测试模块的模块的相邻模块子集,然后在该模块子集的区域中选择最佳学习技术,以对测试模块进行预测。基于其过去在模块子集区域中的表现来选择学习技术。我们使用从PROMISE数据存储库和Eclipse bug数据存储库中收集的故障数据集对提出的方法进行了评估。实验结果表明,该方法在预测软件系统中的故障数量时可提高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号