首页> 外文期刊>IEEE Transactions on Reliability >An improved minimizing algorithm for sum of disjoint products (reliability theory)
【24h】

An improved minimizing algorithm for sum of disjoint products (reliability theory)

机译:改进的最小相交积和算法(可靠性理论)

获取原文
获取原文并翻译 | 示例

摘要

The Abraham-Locks-revised (ALR) sum-of-disjoint products (SDP) algorithm is an efficient method for obtaining a system reliability formula. The author describes a minor modification of the ALR algorithm called the Abraham-Locks-Wilson (ALW) method. The new feature is an alternative method of ordering paths and terms. ALW obtains a shorter disjoint system formula on a test example than any previous SDP method and allows small computational savings in processing large paths of complex networks. As there are different ways to obtain a reliability formula it is useful to use an approach which yields the smallest formula relative to computational effort expended. The extra effort in ordering the terms should be reasonably small and usually leads to improved efficiency in the later stages of the algorithm. ALW allows the analyst to operate in a more efficient way on many problems, particularly if the overlap ordering is used in the early stages of processing but is probably ignored for terms that contain a majority of the Boolean variables.
机译:Abraham-Locks修订(ALR)的不相乘积(SDP)算法是一种获得系统可靠性公式的有效方法。作者介绍了对ALR算法(称为Abraham-Locks-Wilson(ALW)方法)的较小修改。新功能是排序路径和术语的另一种方法。与任何以前的SDP方法相比,ALW在测试示例上获得了更短的不相交系统公式,并且在处理复杂网络的大路径时可以节省少量计算量。由于有不同的方法来获得可靠性公式,因此使用相对于所耗费的计算量得出最小公式的方法很有用。排序项的额外工作应相当小,通常可以在算法的后期提高效率。 ALW使分析人员可以对许多问题以更有效的方式进行操作,尤其是如果在处理的早期阶段使用了重叠排序,但是对于包含大多数布尔变量的术语可能会被忽略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号