首页> 外文期刊>IEEE Transactions on Radiation and Plasma Medical Sciences >3-D RPET-NET: Development of a 3-D PET Imaging Convolutional Neural Network for Radiomics Analysis and Outcome Prediction
【24h】

3-D RPET-NET: Development of a 3-D PET Imaging Convolutional Neural Network for Radiomics Analysis and Outcome Prediction

机译:3-D RPET-NET:用于放射学分析和结果预测的3-D PET成像卷积神经网络的开发

获取原文
获取原文并翻译 | 示例

摘要

Radiomics is now widely used to improve the prediction of treatment response and patient prognosis in oncology. In this paper, we propose an end-to-end prediction model based on a 3-D convolutional neural network (CNN), called 3-D RPET-NET, that extracts 3-D image features through four layers. Our model was evaluated for its ability to predict the response to radio-chemotherapy in 97 patients with esophageal cancer from positron emission tomography (PET) images. The accuracy of the model was compared to five other methods proposed in the literature for PET images, based on 2-D CNN and random forest algorithms. The role of the volume of interest on the accuracy of 3-D RPET-NET was also evaluated using isotropic margins of 1–4 cm around the tumor volume. After segmentation of the lesion using a fixed threshold value of 40% of the maximum standard uptake value, the best accuracy of 3-D RPET-NET reached 72% and outperformed the other methods tested. We also showed that using an isotropic margin of 2 cm around the tumor volume improved the performances of 3-D RPET-NET to reach an accuracy of 75%.
机译:现在,Radimics被广泛用于改善肿瘤学中治疗反应和患者预后的预测。在本文中,我们提出了一种基于3-D卷积神经网络(CNN)的端到端预测模型,称为3-D RPET-NET,该模型通过四层提取3-D图像特征。我们评估了该模型从正电子发射断层扫描(PET)图像中预测97例食管癌患者对放化疗反应的能力。基于2-D CNN和随机森林算法,将模型的准确性与文献中针对PET图像提出的其他五种方法进行了比较。还使用肿瘤体积周围1-4 cm的各向同性边界评估了感兴趣的体积对3-D RPET-NET准确性的作用。在使用最大标准摄取值的40%的固定阈值对病变进行分割后,3-D RPET-NET的最佳精度达到72%,并且胜过其他测试方法。我们还表明,在肿瘤体积周围使用2 cm的各向同性边界可以改善3-D RPET-NET的性能,从而达到75%的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号