首页> 外文期刊>IEEE Transactions on Nuclear Science >Factor analysis in prostate cancer: delineation of organ structures and automatic generation of in- and output functions
【24h】

Factor analysis in prostate cancer: delineation of organ structures and automatic generation of in- and output functions

机译:前列腺癌的因子分析:器官结构的描绘以及输入和输出功能的自动生成

获取原文
获取原文并翻译 | 示例

摘要

Factor analysis (FA) is used for extracting the properties of dynamic datasets. Objective: FA was applied to dynamic studies using positron emission topography (PET) to create factor images and factor curves from which input and output functions could be derived for kinetic modeling. This noninvasive automated and image-based analysis should permit routine application of quantitative PET in cancer patients. Methods: In nine men with prostate cancer, dynamic PET studies were performed on an ECAT HR+ system. After administration of 13.5 mCi of /sup 11/C-labeled acetate, data were acquired for 20 min. Images were reconstructed with iterative algorithms, a maximum a posteriori (MAP) for transmission scans, and ordered subset expectation maximization (OSEM) for emission scans. The body contour was determined with thresholding of the transmission images. All voxels included in the body contour were used for processing. FA extracted the shape of the pure time activity curves (TACs). The factors were used to create functional images, from which a region-of-interest (ROI) could be generated with thresholding techniques. These ROIs were used to create image-based TACs. Results: The automated procedure was successful in eight out of nine patients. Minimal intervention generated reliable factors in the remaining patient. Factors are normalized; their magnitude was adjusted by a scale factor using: (1) reversed normalization and (2) image-based parameters. In principle, the input factor generated by FA has no spillover and produces a pure vascular image and curve. Factor images provided diagnostic information on tumors. The method is operator independent and reproducible. Conclusion: The automated procedure generated factors from dynamic PET data corresponding to vessels and tumor. FA can noninvasively generate input and output functions. This processing tool facilitates PET as a reproducible quantification method in routine oncological applications.
机译:因子分析(FA)用于提取动态数据集的属性。目的:FA被应用到使用正电子发射形貌(PET)进行动力学研究中,以创建因子图像和因子曲线,从中可以导出输入和输出函数以进行动力学建模。这种无创的自动化和基于图像的分析应允许在癌症患者中常规应用定量PET。方法:在9名前列腺癌男性中,在ECAT HR +系统上进行了动态PET研究。施用13.5 mCi的11 / C标记醋酸盐后,获取数据20分钟。使用迭代算法,透射扫描的最大后验(MAP)和发射扫描的有序子集期望最大化(OSEM)来重建图像。用透射图像的阈值确定身体轮廓。身体轮廓中包括的所有体素均用于处理。 FA提取了纯时间活动曲线(TAC)的形状。这些因素用于创建功能图像,可以使用阈值化技术从中生成感兴趣区域(ROI)。这些ROI用于创建基于图像的TAC。结果:自动化程序在9名患者中有8名成功。最少的干预会在其余患者中产生可靠的因素。因子已归一化;通过使用以下比例因子来调整其大小:(1)反向归一化和(2)基于图像的参数。原则上,由FA生成的输入因子没有溢出,并生成纯净的血管图像和曲线。因子图像提供了有关肿瘤的诊断信息。该方法是独立于操作员且可重复的。结论:自动化程序从动态PET数据中生成与血管和肿瘤相对应的因素。 FA可以无创地生成输入和输出功能。该处理工具有助于PET在常规肿瘤学应用中作为可重复的定量方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号