首页> 外文期刊>IEEE transactions on neural systems and rehabilitation engineering >Methodology and Design Flow for Assisted Neural-Model Implementations in FPGAs
【24h】

Methodology and Design Flow for Assisted Neural-Model Implementations in FPGAs

机译:FPGA中辅助神经模型实现的方法和设计流程

获取原文
获取原文并翻译 | 示例

摘要

Field programmable gate arrays (FPGAs) have previously been shown as high-performance platforms for neural-modeling applications. Implementations have traditionally been time-consuming and error-prone, requiring the neural modeler to work outside of their expert domain. This paper demonstrates a new approach to the development of neural models using an auto-generation toolkit. This design tool enables model construction-level alterations (e.g., adjustment of model population size or insertion/deletion of an ionic conductance) within hours and parameter changes on-the-fly. The approach is validated on a 40-neuron pre-Boumltzinger complex population model consisting of Hodgkin-Huxley style conductances and fully interconnected synapses. A total of 1880 parameters are on-the-fly user tunable on a free-running model. The resulting implemented model performs at a theoretical 8.7times real-time utilizing 90% of logic elements within a Xilinx Virtex-4 XC4VSX35-fg676-10FPGA
机译:现场可编程门阵列(FPGA)先前已被证明是用于神经建模应用程序的高性能平台。传统上,实现是耗时且容易出错的,需要神经建模器在其专家范围之外工作。本文演示了一种使用自动生成工具包开发神经模型的新方法。该设计工具可在数小时内完成模型构建级别的更改(例如,调整模型总体大小或离子电导的插入/删除),并即时进行参数更改。该方法已在40神经元布姆辛格前复杂种群模型中得到验证,该模型由霍奇金-赫克斯利式电导和完全互连的突触组成。在自由运行的模型上,共有1880个实时参数可供用户调整。利用Xilinx Virtex-4 XC4VSX35-fg676-10FPGA内90%的逻辑元件,最终实现的模型在理论上实时执行8.7倍的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号