首页> 外文期刊>IEEE transactions on neural systems and rehabilitation engineering >A Multi-Classifier Approach to MUAP Classification for Diagnosis of Neuromuscular Disorders
【24h】

A Multi-Classifier Approach to MUAP Classification for Diagnosis of Neuromuscular Disorders

机译:MUAP分类的多分类器方法用于神经肌肉疾病的诊断

获取原文
获取原文并翻译 | 示例

摘要

The shapes and sounds of isolated motor unit action potentials (MUAPs) in an electromyographic (EMG) signal provide a significant source of information for diagnosis, treatment and management of neuromuscular disorders. These parameters can be analyzed qualitatively by an expert or quantitatively by using pattern recognition techniques. Due to the advantages of quantitative EMG method, developing robust automated MUAP classifiers have been explored and several systems have been developed for this purpose by now, but the accuracy of the existing methods is not high enough to be used in clinical environments. In this paper, a novel classification strategy based on ensemble of support vector machines (SVMs) classifiers in hybrid serial/parallel architecture is proposed to determine the class label (myopathic, neuropathic, or normal) for a given MUAP. The developed system employs both time domain and time-frequency domain features of the MUAPs extracted from an EMG signal using an EMG signal decomposition system. Different classification strategies including single classifier and multiple classifiers with several subsets of features were investigated. Experimental results using a set of real EMG signals showed robust performance of multi-classifier methods proposed here. Of the methods studied, the multi-classifier that uses multiple features sets and a combination of both trainable and nontrainable fusion techniques to aggregate base classifiers showed the best performance with average accuracy of 97% which is significantly higher than the average accuracy of single SVM-based classifier system (i.e., 88%).
机译:肌电图(EMG)信号中孤立的运动单位动作电位(MUAP)的形状和声音为神经肌肉疾病的诊断,治疗和管理提供了重要的信息来源。这些参数可以由专家进行定性分析,也可以使用模式识别技术进行定量分析。由于定量肌电图方法的优势,目前已经开发了鲁棒的自动化MUAP分类器,并为此目的开发了一些系统,但是现有方法的准确性不够高,无法在临床环境中使用。在本文中,提出了一种基于支持向量机(SVM)分类器在混合串行/并行架构中的分类器的分类策略,以确定给定的MUAP的分类标签(肌病,神经病或正常)。所开发的系统利用了使用EMG信号分解系统从EMG信号中提取的MUAP的时域和时频域特征。研究了包括具有多个特征子集的单个分类器和多个分类器的不同分类策略。使用一组实际的EMG信号的实验结果显示了此处提出的多分类器方法的鲁棒性能。在研究的方法中,使用多个特征集的多分类器以及可训练和不可训练融合技术的组合来汇总基本分类器,显示出最佳性能,其平均准确度为97%,大大高于单个SVM-基于分类器系统(即88%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号