首页> 外文期刊>IEEE transactions on neural systems and rehabilitation engineering >Bispectrum-Based Channel Selection for Motor Imagery Based Brain-Computer Interfacing
【24h】

Bispectrum-Based Channel Selection for Motor Imagery Based Brain-Computer Interfacing

机译:基于BISPectrum的基于电机图像的脑电电脑接口的频道选择

获取原文
获取原文并翻译 | 示例

摘要

The performance of motor imagery (MI) based Brain-computer interfacing (BCI) is easily affected by noise and redundant information that exists in the multi-channel electroencephalogram (EEG). To solve this problem, many temporal and spatial feature based channel selection methods have been proposed. However, temporal and spatial features do not accurately reflect changes in the power of the oscillatory EEG. Thus, spectral features of MI-related EEG signals may be useful for channel selection. Bispectrum analysis is a technique developed for extracting non-linear and non-Gaussian information from non-linear and non-Gaussian signals. The features extracted from bispectrum analysis can provide frequency domain information about the EEG. Therefore, in this study, we propose a bispectrum-based channel selection (BCS) method for MI-based BCI. The proposed method uses the sum of logarithmic amplitudes (SLA) and the first order spectral moment (FOSM) features extracted from bispectrum analysis to select EEG channels without redundant information. Three public BCI competition datasets (BCI competition IV dataset 1, BCI competition III dataset IVa and BCI competition III dataset IIIa) were used to validate the effectiveness of our proposed method. The results indicate that our BCS method outperforms use of all channels (83.8% vs 69.4%, 86.3% vs 82.9% and 77.8% vs 68.2%, respectively). Furthermore, compared to the other state-of-the-art methods, our BCS method also can achieve significantly better classification accuracies for MI-based BCI (Wilcoxon signed test, p < 0.05).
机译:基于电动机图像(MI)的大脑电脑接口(BCI)的性能很容易受到多通道脑电图(EEG)中存在的噪声和冗余信息的影响。为了解决这个问题,已经提出了许多基于时间和空间特征的信道选择方法。然而,时间和空间特征不能准确地反映振荡脑电图的功率的变化。因此,MI相关的EEG信号的光谱特征可以是可用的信道选择。 BISPectrum分析是一种用于从非线性和非高斯信号提取非线性和非高斯信息的技术。从BISPectrum分析中提取的特征可以提供有关EEG的频域信息。因此,在本研究中,我们提出了基于BISPectrum的基于BCI的信道选择(BCS)方法。所提出的方法使用从BISPectrum分析中提取的对数幅度(SLA)和第一阶光谱力矩(FOSM)特征来选择EEG信道而不冗余信息。三个公共BCI比赛数据集(BCI比赛IV数据集1,BCI竞赛III数据集IVA和BCI竞赛III Dataset IIIA)用于验证我们提出的方法的有效性。结果表明,我们的BCS方法优于所有通道的使用(83.8%与69.4%,86.3%vs 82.9%和77.8%与68.2%)分别使用。此外,与其他最先进的方法相比,我们的BCS方法也可以实现基于MI的BCI的显着更好的分类精度(Wilcoxon签名测试,P <0.05)。

著录项

  • 来源
  • 作者单位

    East China Univ Sci & Technol Minist Educ Key Lab Adv Control & Optimizat Chem Proc Shanghai 200237 Peoples R China;

    East China Univ Sci & Technol Minist Educ Key Lab Adv Control & Optimizat Chem Proc Shanghai 200237 Peoples R China;

    Univ Essex Sch Comp Sci & Elect Engn Brain Comp Interfacing & Neural Engn Lab Colchester CO4 3SQ Essex England;

    East China Univ Sci & Technol Minist Educ Key Lab Adv Control & Optimizat Chem Proc Shanghai 200237 Peoples R China;

    East China Univ Sci & Technol Minist Educ Key Lab Adv Control & Optimizat Chem Proc Shanghai 200237 Peoples R China;

    East China Univ Sci & Technol Minist Educ Key Lab Adv Control & Optimizat Chem Proc Shanghai 200237 Peoples R China;

    Skolkovo Inst Sci & Technol Skoltech Moscow 121205 Russia|Nicolaus Copernicus Univ UMK Dept Appl Comp Sci PL-87100 Torun Poland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Brain-computer interface; motor imagery; electroencephalogram (EEG); bispectrum analysis; channel selection;

    机译:脑电脑界面;电机图像;脑电图(EEG);BISPectrum分析;渠道选择;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号