首页> 外文期刊>IEEE transactions on neural systems and rehabilitation engineering >Introducing the Joint EEG-Development Inference (JEDI) Model: A Multi-Way, Data Fusion Approach for Estimating Paediatric Developmental Scores via EEG
【24h】

Introducing the Joint EEG-Development Inference (JEDI) Model: A Multi-Way, Data Fusion Approach for Estimating Paediatric Developmental Scores via EEG

机译:介绍联合EEG开发推理(JEDI)模型:一种多种方式,通过脑电图估算儿科发育得分的多路数据融合方法

获取原文
获取原文并翻译 | 示例

摘要

Accounting for developmental changes in children is a key consideration for adapting neurorehabilitation technologies to paediatric populations. Using well-established clinical tests and questionnaires can be resource and time intensive. With many data-driven rehabilitation approaches relying on EEG data, a means to rapidly assess and infer developmental status of children directly from these recordings could be critical. This paper proposes a new model for estimating classic developmental diagnostic scores by exploiting data fusion in a joint tensor-matrix decomposition of the EEG and score data. We have designated this model the joint EEG-development inference (JEDI) model. The proposed model is illustrated using a common EEG task (button press) via publicly available paediatric data from pre-adolescent children. Using three distinct recording blocks for training, validation, and testing and a ten-fold cross-validation scheme, a robust experimental design was used to evaluate the JEDI model under various conditions. Results indicate that the JEDI model can estimate the developmental scores of children whilemaintaining a high degree of similarity at a population level. These results highlight the JEDI model as a potential evolving tool for rapidly assessing child's development. Clinically, the proposed model could provide useful developmental information in a convenient and low resource manner.
机译:对儿童发育变化的核算是将神经晕船技术适应儿科人群的关键考虑因素。使用良好的临床测试和问卷可以是资源和时间密集的。随着许多数据驱动的康复方法依赖于脑电图数据,一种迅速评估和推断出直接从这些录音的发育状况的方法可能是至关重要的。本文提出了一种通过利用脑电图分解的关节矩阵分解中的数据融合来估算经典发展诊断得分的新模型。我们指定了该模型联合EEG开发推理(JEDI)模型。通过来自青少年前儿童的公共可用的儿科数据来说明所提出的模型。使用三个不同的记录块进行培训,验证和测试以及十倍的交叉验证方案,使用稳健的实验设计在各种条件下评估JEDI模型。结果表明,JEDI模型可以估计在人口水平的高度相似性的情况下估计儿童的发育得分。这些结果突出了JEDI模型作为快速评估儿童发展的潜在不断发展的工具。临床上,所提出的模型可以以方便和低的资源方式提供有用的发展信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号