首页> 外文期刊>IEEE transactions on neural systems and rehabilitation engineering >A Learning Scheme for EMG Based Decoding of Dexterous, In-Hand Manipulation Motions
【24h】

A Learning Scheme for EMG Based Decoding of Dexterous, In-Hand Manipulation Motions

机译:基于EMG的灵巧手部动作解码的学习方案

获取原文
获取原文并翻译 | 示例

摘要

Electromyography(EMG) based interfaces are the most common solutions for the control of robotic, orthotic, prosthetic, assistive, and rehabilitation devices, translating myoelectric activations into meaningful actions. Over the last years, a lot of emphasis has been put into the EMG based decoding of human intention, but very few studies have been carried out focusing on the continuous decoding of human motion. In this work, we present a learning scheme for the EMG based decoding of object motions in dexterous, in-hand manipulation tasks. We also study the contribution of different muscles while performing these tasks and the effect of the gender and hand size in the overall decoding accuracy. To do that, we use EMG signals derived from 16 muscle sites (8 on the hand and 8 on the forearm) from 11 different subjects and an optical motion capture system that records the object motion. The object motion decoding is formulated as a regression problem using the Random Forests methodology. Regarding feature selection, we use the following time-domain features: root mean square, waveform length and zero crossings. A10-fold cross validation procedure is used for model assessment purposes and the feature variable importance values are calculated for each feature. This study shows that subject specific, hand specific, and object specific decoding models offer better decoding accuracy that the generic models.
机译:基于肌电图(EMG)的界面是控制机器人,矫形器,假肢,辅助和康复设备的最常见解决方案,可将肌电激活转化为有意义的动作。在过去的几年中,已经对基于EMG的人类意图解码给予了很大的重视,但是很少有研究着眼于对人类运动的连续解码。在这项工作中,我们提出了一种用于基于EMG的灵巧,手动操作任务中对象运动解码的学习方案。我们还研究了执行这些任务时不同肌肉的贡献以及性别和手的大小对整体解码精度的影响。为此,我们使用了来自11个不同受试者的16个肌肉部位(手部8个,前臂8个)的EMG信号,以及记录对象运动的光学运动捕获系统。使用随机森林方法将对象运动解码公式化为回归问题。关于特征选择,我们使用以下时域特征:均方根,波形长度和零交叉。使用10倍交叉验证程序进行模型评估,并为每个特征计算特征变量的重要性值。这项研究表明,特定于对象,特定于手和特定于对象的解码模型提供了比通用模型更好的解码精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号