首页> 外文期刊>IEEE transactions on neural systems and rehabilitation engineering >Simple and Fast Compensation of sEMG Interface Rotation for Robust Hand Motion Recognition
【24h】

Simple and Fast Compensation of sEMG Interface Rotation for Robust Hand Motion Recognition

机译:sEMG接口旋转的简单快速补偿,可实现可靠的手部动作识别

获取原文
获取原文并翻译 | 示例

摘要

Surface electromyography (sEMG) measurements have demonstrated the potential to recognize complex hand motions. In addition, sEMG enables natural recognition without disturbing movements, and thus, can be used in various fields such as teleoperation, assistant robots, and prosthetic hands. However, sEMG signals highly depend on electrode placements due to the complex muscle structures. A shift of the electrode can lead to inconsistent signal measurement. Thus, sEMG-based recognition is not practical for applications that require long-term and repeated usage. This paper proposes compensation of sEMG interface rotation for robust motion recognition. Once the relationship between sEMG signals and motions is trained, additional training for different electrode configurations is not necessary for a band-type interface. The proposed process is simple and fast. The interface rotation can be compensated for by performing only a single motion for approximately 2 s. The single motion for compensation is dependent on the muscle properties of the user. Generally, ulnar deviation may work. To demonstrate the proposed compensation, recognition of five hand motions is conducted. The experimental results indicate that the proposed compensation can cover the overall range of rotation. In addition, the proposed compensation is validated with a transradial amputee.
机译:表面肌电图(sEMG)测量显示了识别复杂手部动作的潜力。此外,sEMG可以自然识别而不会干扰动作,因此可以用于遥测,辅助机器人和假手等各个领域。但是,由于复杂的肌肉结构,sEMG信号高度依赖于电极位置。电极的移位可能导致信号测量不一致。因此,基于sEMG的识别不适用于需要长期重复使用的应用。本文提出了对sEMG接口旋转的补偿,以实现鲁棒的运动识别。一旦训练了sEMG信号与运动之间的关系,对于带型界面,就无需针对不同的电极配置进行其他训练。所提出的过程简单且快速。通过仅执行单个运动大约2 s,就可以补偿界面旋转。补偿的单个动作取决于使用者的肌肉特性。通常,尺骨偏斜可能有效。为了证明建议的补偿,进行了五个手势的识别。实验结果表明,所提出的补偿可以覆盖整个旋转范围。另外,建议的补偿由is骨截肢者验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号