首页> 外文期刊>IEEE transactions on network and service management >Topology-Aware Prediction of Virtual Network Function Resource Requirements
【24h】

Topology-Aware Prediction of Virtual Network Function Resource Requirements

机译:虚拟网络功能资源需求的拓扑感知预测

获取原文
获取原文并翻译 | 示例

摘要

Network functions virtualization (NFV) continues to gain attention as a paradigm shift in the way telecommunications services are deployed and managed. By separating network function from traditional middleboxes, NFV is expected to lead to reduced capital expenditure and operating expenditure, and to more agile services. However, one of the main challenges to achieving these objectives is how physical resources can be efficiently, autonomously, and dynamically allocated to virtualized network function (VNF) whose resource requirements ebb and flow. In this paper, we propose a graph neural network-based algorithm which exploits VNF forwarding graph topology information to predict future resource requirements for each VNF component (VNFC). The topology information of each VNFC is derived from combining its past resource utilization as well as the modeled effect on the same from VNFCs in its neighborhood. Our proposal has been evaluated using a deployment of a virtualized IP multimedia subsystem, and real VoIP traffic traces, with results showing an average prediction accuracy of 90%, compared to 85% obtained while using traditional feed-forward neural networks. Moreover, compared to a scenario where resources are allocated manually and/or statically, our technique reduces the average number of dropped calls by at least 27% and improves call setup latency by over 29%.
机译:随着电信服务的部署和管理方式发生转变,网络功能虚拟化(NFV)继续受到关注。通过将网络功能与传统的中间盒分离,NFV有望减少资本支出和运营支出,并提供更多敏捷服务。但是,实现这些目标的主要挑战之一是如何高效,自主和动态地将物理资源分配给资源需求起伏不定的虚拟化网络功能(VNF)。在本文中,我们提出了一种基于图神经网络的算法,该算法利用VNF转发图拓扑信息来预测每个VNF组件(VNFC)的未来资源需求。每个VNFC的拓扑信息是通过组合其过去的资源利用率以及来自其附近的VNFC对其建模的效果而得出的。我们的建议已通过使用虚拟IP多媒体子系统的部署和实际VoIP流量跟踪进行了评估,结果显示平均预测精度为90%,而使用传统前馈神经网络时则为85%。此外,与手动和/或静态分配资源的方案相比,我们的技术将掉话的平均数量减少了至少27%,并将呼叫建立延迟提高了29%以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号